martedì 9 ottobre 2018

Saturno Sistema solare

Cosa c'è su Titano?


Titano è la più grande luna di Saturno. È l'unico satellite naturale con una atmosfera e dei bacini liquidi in superficie. Questo fa di Titano un luogo incredibile, simile alla Terra e ricco di materiali organici di base.

Tutto ciò che sappiamo su Titano è grazie alla leggendaria sonda Cassini, che all'inizio della sua missione ha sganciato sulla superficie di Titano la sonda Huygens.
La Huygens è miracolosamente atterrata sulla superficie di Titano riuscendo ad inviarci immagini uniche di questo ambiente alieno e dati meteorologici preziosissimi.

Inoltre la Cassini ha studiato, fotografato ed "ascoltato" Titano in diverse occasione durante i suoi 20 anni di sorvoli di Saturno prima che la Nasa la distruggesse.
In questo approfondimento abbiamo parlato del motivo per la quale la Nasa ha distrutto la sonda Cassini nonostante funzionasse ancora molto bene: Perché Cassini è dovuta morire
Titano è un satellite unico nel sistema solare perché ha un'atmosfera densa quasi come quella della Terra: circa 1,5 bar in confronto a quella terrestre che è di 1 bar.
Questa atmosfera dota Titano di molti processi e fenomeni a noi familiari sulla Terra.
L'atmosfera di Titano è in gran parte composta di Azoto, e anche questa è una similitudine molto forte se pensiamo che anche l'80% dell'atmosfera terrestre è composta di Azoto.
Nel cielo ci sono nuvole dall'aspetto simile a quelle terrestri ma sono composte da metano ed etano, e questo le rende davvero diverse dalle nostre che sono invece composte da vapore acqueo.
Nel complesso il clima di Titano è dominato da modelli meteorologici stagionali come sulla Terra. Anche li le giornate possono serene, nuvolose, molto ventose oppure molto piovose.
Tutto ciò crea sulla sua superficie caratteristiche simili a quelle della Terra. Sono presenti dune, fiumi, foci a delta e a estuario, laghi e mari.

Ovviamente, la pioggia su Titano è molto diversa dalla nostra, sia per composizione che per temperatura.
A formare le piogge di Titano è la bassa temperatura.
Alla temperatura di -180°C il metano che è presente nell'atmosfera condensa e diventa liquido. Sulla Terra possiamo ricreare questo fenomeno solamente in laboratorio.

C'è anche da dire che su Titano le piogge non sono così frequenti come sulla Terra, ma quando si verificano possono essere davvero abbondanti.
Su Titano infatti, la luce solare è molto debole, diciamo che è come essere al crepuscolo sulla terra. Ne consegue che anche il ciclo idrologico che genera le piogge è molto allungato generando normalmente rovesci di pochi centimetro all'anno.
Ma allora come fanno ad essersi formati interi laghi di Metano?
Beh, anche se normalmente le piogge sono di bassa portata, tuttavia con cadenze decennali su Titano hanno luogo rovesci decisamente abbondanti in grado di depositano al suolo decine di centimetri di Metano liquido in poche ore! E' probabile che nella storia ci siano state anche vere e proprie alluvioni con innalzamento del livello dei mari di qualche metro.
Quindi stiamo parlando di brevi e molto sporadici periodi alluvionali alternati da lunghissimi periodi di siccità.

Questa alternanza è dovuta all'inclinazione di Titano e alla sua distanza dal sole.
Titano infatti è inclinato di 26° sul suo asse di rotazione, quindi il suo clima ha una forzatura stagionale significativa, ma poiché ci vogliono 29,5 anni terrestri per concludere un intero giro attorno al Sole (assieme a Saturno ovviamente), le sue stagioni sono molto, molto lunghe.
Oltre alle precipitazioni stagionali, il ciclo annuale di Titano si manifesta anche nella circolazione stratosferica, dove avvengono ampie oscillazioni nell'abbondanza di vari gas e sulla formazione delle nuvole

Come abbiamo detto, su Titano ci sono diversi bacini di gas liquido.
Sebbene l'esistenza di questi mari di idrocarburi fosse stata a lungo ipotizzati, la loro presenza fu confermata solamente dalle osservazioni radar di Cassini nel 2006, circa 2 anni dopo che la sonda arrivò nel sistema di Saturno.

I radar hanno individuato centinaia di piccoli laghi a circa 70° di latitudine.
Il primo mare invece ad essere scoperto fu il Mare Ligeia, un bacino largo dai 300 ai 400 km. Per fare un paragone, più della distanzia che separa la Sardegna dalla Sicilia.
Ma il Mare Ligeia non è l'unico mare di Titano. Vicino al polo nord troviamo il Mare Punga, anch'esso con un diametro di circa 350km.
Ma il primato di mare più grande di Titano va al Mare Kraken, che si estende per circa 1.000 km (più o meno la lunghezza dell'Italia) e si trova verso le medie latitudini dell'emisfero nord.

L'emisfero meridionale ha solo un modesto bacino: il Lago Ontario, che misura circa 70 km per 250. Modesto per modo di dire, è grande il doppio del lago di Garda!
Questo bacino è di fatto il più studiato perché nel periodo tra il 2004 e il 2010 l'emisfero sud è stato illuminato meglio dell'emisfero nord facilitando il rilevamento a distanza nella banda infrarossa usata da Cassini per rilevare l'etano.
Le osservazioni mettono in evidenza che il Lago Ontario negli ultimi anni si sta ritirando, probabilmente in concomitanza delle siccità stagionali.
Infatti sembra essere circondato da un anello di fango che, per la sua composizione, potrebbe essere cosparso di componenti organici base.
Ovviamente questo fango è molto diverso da quello che troviamo sula Terra, e ovviamente i composti organici che potrebbe contenere sarebbero anch'essi differenti da quelli a cui siamo abituati a pensare.

Ora la domanda potrebbe sorgere spontanea: Come mai nell'emisfero nord ci sono tanti bacini mentre al sud no?
Essendo Titano un corpo molto diverso dalla Terra è difficile dare una riposta ma è molto probabile che la presenza dei mari nell'emisfero settentrionale sia una conseguenza della configurazione astronomica delle stagioni di Titano.
L'estate nell'emisfero settentrionale è meno calda rispetto all'emisfero meridionale, ma di durata maggiore.
Questo fa si che la "stagione delle piogge" sia più lunga e permette al metano e all'etano liquidi di accumularsi.
Questa configurazione stagionale dura diverse decine di migliaia di anni, proprio come le ere glaciali della Terra.

Chiudiamo con una curiosità.
I mari e i laghi di Titano sembrerebbero essere pressoché privi di onde.
E questo è un vero enigma se pensiamo che su Titano la gravità e molto bassa, l'atmosfera è piuttosto densa, e i venti spirano abbastanza forti da aver generato sulla superficie delle dune simili quelle marziane.

Un motivo per l'assenza di onde potrebbe essere ricercato nella fase stagionale in cui Titano è stato osservato dalla sonda Cassini. La sonda infatti non ha rilevato venti abbastanza sostenuti da generare onde.
Un'altro motivo, legato comunque alla velocità del vento, potrebbe essere che i mari siano troppo poco viscosi. la presenza o meno di onde sulla superficie dei bacini di Titano è sotto i riflettori perché fa una grande differenza su come potrebbero essere i litorali e le coste di Titano, e su quali sedimenti potrebbero trovarsi sulle spiagge.

In teoria la velocità del vento necessaria per la generazione delle onde su mari di metano ed etano, è di circa 0,4 - 0,6 m/s .
Tali velocità non sono state rilevate durante la missione Cassini, ma nei prossimi anni, mentre Titano si sposta verso il solstizio estivo, i modelli atmosferici sulla circolazione globale prevedono un aumento significativo dei venti.
Questo porterà senz'altro allo sviluppo di onde che potrebbero raggiungere anche gli 80cm di altezza.

Insomma, il paesaggio, l'atmosfera e il sistema climatico di Titano hanno molte similitudini con la Terra e questo genera molto interesse per le implicazioni astrobiologiche che offre.
Titano potrebbe essere molto ricco di sostanze organiche e questo fa di lui un obiettivo importante per l'esplorazione futura.




Pianeta:Saturno
Distanza dal pianeta:1.200.000 km (3 volte la distanza Luna-Terra)
Diametro:5.150 km (1,5 volte la luna)

venerdì 21 settembre 2018

buchi neri galassie quasar universo

I Quasar



I quasar sono oggetti estremamente massicci, luminosi e potenti.
Sono in assoluto gli oggetti più luminosi dell'universo.


Un tempo si pensava che i Quasar fossero anche gli oggetti più di distanti nell'universo, ma oggi sappiamo che la distanza (e quindi anche l'età) non è più una proprietà che distingue questi oggetti.
Sono stati scoperti grazie alle loro fortissime emissioni radio; da qui il nome di "oggetti quasi stellari ad emissione radio".
Oggi sappiamo che in verità soltanto il 10% circa dei quasar conosciuti emette forti onde radio.

Ma quindi cosa sono i Quasar? e perché ci hanno tratto in inganno più volte?

I Quasar nono sono altro che buchi neri. Buchi neri supermassicci per la precisione. Eh... buchi neri molto luminosi anche, di gran lunga gli oggetti più luminosi dell'universo.
Sono talmente luminosi da nascondere completamente la luce dei miliardi di stelle contenute nella galassia ospite!
Per capire meglio la struttura di un buco nero vi invitiamo a leggere questo approfondimento: Come sono fatti i buchi neri

Credete che questo sia un grande controsenso? Non lo è affatto, ed ecco il perché.
I Quasar, che ribadiamo sono a tutti gli effetti dei buchi neri, hanno dimensioni davvero enormi, alcuni di loro possono raggiungere la dimensione del nostro sistema solare.
E la massa di un Quasar può andare da milioni a miliardi di masse solari.

Come si può immaginare la forza di gravità nei pressi di questi buchi neri super massicci è davvero spaventosa. Anzi, ad essere sinceri è davvero difficile immaginarla.
Per intenderci, i quasar sono in grado di attirare a se, e in modo molto veloce, materia fino a distanze di anni luce. E la materia che finisce nelle lori fauci vi entrano a velocità elevatissima: dai 3.000 ai 10.000 km/s!

Questa corrente di materia crea attorno al Quasar un vortice luminosissimo a causa della temperatura che si viene a creare, e dell'energia che viene prodotta.
Un Quasar converte in energia circa la metà della massa che inghiotte!

Ecco svelata la luminosità dei Quasar. E per paradosso essendo i Quasar dei buchi neri, possiamo dire che i buchi neri possono in queste circostanze essere gli oggetti più luminosi dell'universo.

E non è tutto.
I Buchi neri hanno un campo magnetico molto forte. Pensate a quanto possa essere forte il campo magnetico di un buco nero super-massiccio e quanto quello di un Quasar per come lo abbiamo descritto sopra.
I fortissimi campi magnetici che avvolgono i Quasar sono in grado di intrappolare parte della materia che il quasar divora e di riversarla verso l'esterno lungo i poli magnetici.

Questo fenomeno crea dei getti di materia ed energia potentissimi e luminosissimi.
Possono percorrere centinaia di anni luce attraverso la galassia ospite e in molti casi essere anche in grado di uscire!

I primi anni dopo la loro scoperta, i Quasar ci hanno tratto in inganno perché nonostante la loro dimensione reale, essi appaiono grandi come stelle.
E quindi non si riusciva a capire come facesse una stella così lontana ad essere così luminosa e ad emettere così tante onde radio.
Solamente con le scoperte dei nuclei galattici attivi e del comportamento dei dischi di accrescimento dei buchi neri si è giunti alla conclusione che in realtà i Quasar non hanno niente a che vedere con le stelle.

Aver capito che i Quasar sono in realtà buchi neri super-massicci nei cuori di alcune galassie attive ci ha anche fatto capire che non tutti i quasar sono così lontani.
Ma i più lontani, e di conseguenza quelli più luminosi visto che riusciamo a vederli, si allontanano dalla terra ad una velocità che si avvicina quasi ad un terzo di quella della luce

Ora sorgono spontanee alcune domande.
Tutti i buchi neri super-massicci nei centri galattici sono Quasar? e Perché alcuni di loro emettono forti radiazioni radio come avviene per i nuclei galattici attivi? E che differenza c'è tra un Quasar e un nucleo galattico attivo?

La risposta è che questi tre oggetti sono in realtà la stessa cosa.
Quando un buco nero super-massiccio nel cuore di una galassia non sta divorando materia, rimane invisibile (se non per l'effetto della sua gravità sugli oggetti circostanti come nel caso della Via Lattea)
Nel cuore della Via Lattea ci sono centinaia di buchi neri. In questo approfondimento ne parliamo: Centinaia di buchi neri nel centro della Via Lattea
Ma non appena questo buco nero inizia a divorare materia, ecco che il disco di accrescimento di infiamma e con lui i getti di energia che vengono espulsi dai poli magnetici.
Ecco che si accende il Quasar, e che il nucleo della galassia diventa un nucleo galattico attivo.
Quando il pasto del buco nero termina, il Quasar torna ad essere un oscuro buco nero dalle dimensioni del sistema solare.
Si può quindi dire che il Quasar sia in realtà uno stato del buco nero, e che lo è solo per certi periodi.

Per concludere, l'angolo del polo magnetico di un Quasar rispetto alla terra cambia sensibilmente il modo in cui questo viene osservato.
Quindi, quando i jet di una quasar sono perpendicolari a noi, ci appare come radio-galassia.
Quando invece i jet hanno angolazioni diverse vediamo quelli che chiamiamo comunemente Quasar.
Infine, nei rari casi in cui questi getti sono puntati verso la terra, li chiamiamo Blazar, e ci appaiono ancora più luminosi dei Quasar, anche se sono proprio Quasar.

Le immagini che trovate nella pagina aiutano a comprendere i diversi nomi in base ai punti di vista.
Quasar, galassie attive, buchi neri e Blazar: tanti nomi per indicare la stessa cosa!



venerdì 14 settembre 2018

buchi neri via lattea

Nel centro della nostra galassia ci sono probabilmente centinaia di piccoli buchi neri. E' la prima volta che, anche se in maniera indiretta, vediamo nell'universo una "bolla" di buchi neri così relativamente vicini. La foto qui sopra è il risultato di una selezione fatta usando il telescopio spaziale della NASA Chandra che sta osservando, tra le altre cose, il cuore della Via Lattea.

Sono buchi neri dal raggio molto piccolo, ma che hanno una massa che va dalle 5 alle 30 volte quella del Sole. Ed proprio questo rapporto tra massa e dimensione a renderli così potenti.

Non si parla quindi di buchi neri super massicci come quello al centro della galassia, ma di piccolissimi buchi neri di massa stellare.

Il gruppo di buchi neri che si troverebbe nei pressi del centro della Via Lattea conterebbe decine di esemplari sparsi in una bolla dal diametro di circa tre anni luce attorno al famoso buco nero supermassiccio che si trova nel cuore: Sagittario A* (Sgr A*).
La presenza di questa popolazione di buchi neri è anche confermata dai sistemi di simulazione sui movimenti delle stelle all'interno delle galassie a spirale, eseguita sui dati raccolti dal telescopio Chandra.
Queste simulazioni mettono in evidenza che durante la vita della galassia, un numero che potrebbe arrivare fino 20.000 unità di buchi neri di massa stellare, si raccoglierebbe vicino al nucleo della galassia stessa.
Potete scoprire come è fatto realmente un buco nero in questo approfondimento: Come sono fatti i buchi neri?

Ma come facciamo ad essere così sicuri che ci siano tutti questi buchi neri vicino al nucleo della Via Lattea?

Un buco nero, da solo, è invisibile.
Tuttavia, i buchi neri di piccole dimensioni come quelli in questione, spesso sono nati da processi simili alle supernove 1a, e quindi hanno un così detto "compagno orbitale".
per capire meglio le supernovae 1A e questo tipo di buchi neri potete leggere questo approfondimento: Cosa sono le supernovae?

Quindi, un buco in coppia binaria con un'altra stella, attira a sè il gas dalla sua compagna, e lo fa ad una velocità straordinaria!
Questo materiale, mentre cade ad altissima velocità nelle fauci del buco nero, acquisisce una temperatura che arriva a milioni di gradi e il suo percorso attorno al buco nero assume una forma a disco.
Tutto ciò produce una forte emissione di raggi X. Da qui anche il nome di "binari a raggi X".

Nell'immagine del centro della Via Lattea che vedete qui sopra, i pallini rossi localizzano questo tipo di buchi neri.
Sono tutti localizzati in un'area di circa 12 anni luce attorno a Sgr A*
I pallini gialli invece rappresentano sorgenti a raggi X simili ai buchi neri binari, ma che però hanno origine da sistemi che ospitano al centro stelle nane bianche. Queste stelle potrebbero presto dare luce a delle supernovae di tipo 1A.

Dopo le osservazioni sulla variabilità delle emissioni di raggi X gli astronomi sono abbastanza sicuri che gli oggetti identificati dai puntini rossi siano dei buchi neri binari ed escludono che siano sistemi binari costituite da stelle di neutroni. Anche se esistono probabilità che questi oggetti siano in realtà "Pulsar millisecondi" e che il loro tempo di rotazione sia talmente veloce da non riuscire ad essere percepito dai nostri radiotelescopi odierni.

Poiché alle distanze di cui stiamo parlando possono essere osservate soltanto le sorgenti a raggi X più brillanti, le ipotesi degli astrofisici si spingono a stimare che in realtà la popolazione di buchi neri della zona non rilevato sia molto più alta. Inizialmente gli astrofisici pensavano che intorno a Sgr A* potesse esserci una popolazione da 300 ao 900 esemplari. Oggi si stima che in realtà ci siano qualcosa come 10-40 mila buchi neri di massa stellare!

Questa enorme popolazione di buchi neri accompagnati da stelle potrebbe fornire informazioni importanti sulla formazione dei sistemi binari di questo tipo che, a quanto pare, non sono poi così rari.
Costellazione:Perseo
Ascensione retta:03h 19m 48,2s
Declinazione:+41° 30′ 42″
Magnitudine:11,9
Dimensione apparente:2,2' x 1,7'
Distanza:235 milioni a.l.

martedì 4 settembre 2018

Sistema solare Sole

La posizione della Terra rispetto all'inclinazione del Sole fa la differenza sulla nostra percezione del vento solare. Ecco quali sono i fattori che ci aiutano nelle previsioni del tempo spaziali.

Il vento solare è un flusso di protoni ed elettroni rilasciato dal Sole.
Questo flusso di particelle varia costantemente in termini di velocità, densità e temperatura.
L'intensità più alta di tutti questi fattori si verifica quando il vento solare fuoriesce da un foro coronale, oppure quando segue una una espulsione di massa coronale.

Il vento solare che ha origine da un buco coronale, è un flusso costante di particelle ad alta velocità mentre quello derivante da un'espulsione di massa coronale è più simile a un'enorme nuvola di plasma solare che si muove rapidamente e dai margini definiti.

Quando il flusso di particelle che costituiscono il vento solare arriva sulla Terra, incontra il campo magnetico terrestre che veicola le particelle verso i poli magnetici del pianeta per poi spingerle nell'atmosfera.
A questo punto le particelle del vento solare si scontrano con gli atomi di azoto e di ossigeno che formano la nostra atmosfera, i quali cedono parte della loro energia alle particelle entranti. Le particelle provenienti dal sole infine rilasciano lentamente sotto forma di luce l'energia ricevuta dagli atomi dell'atmosfera terrestre.
Ecco che si accende la magia delle aurore boreali.

Ma come sappiamo ormai da anni, il vento solare non è responsabile solo delle stupende aurore boreali che vediamo ai poli, e che in casi di vento davvero intenso riescono a lambire anche le nostre zone.
Il vento solare infatti, è responsabile anche di disturbi nelle telecomunicazioni e in alcuni casi estremi di collassi delle centrali elettriche "a portata di soffio".
In questi casi si parla di vere e proprie tempeste elettromagnetiche.

La velocità del vento solare è un fattore importante.
Le particelle con una maggiore velocità colpiscono più forte il campo magnetico terrestre e hanno una maggiore probabilità di causare condizioni geomagnetiche disturbate mentre comprimono la magnetosfera.
La velocità del vento solare sulla Terra si trova normalmente intorno ai 300km/sec, ma aumenta quando arriva un flusso coronale ad alta velocità.
Durante un impatto generato da una espulsione di massa coronale, la velocità del vento solare può saltare improvvisamente fino a 500-1000 km/sec.

Un'altro fattore importante è la densità del vento solare
Questo parametro ci mostra quanto è denso il flusso di particelle.
Più particelle sono presenti nel vento solare, più il vento e denso e maggiori sono le possibilità che si abbiano aurore boreali e tempeste geomagnetiche.
La scala utilizzata per misurare l'intensità del vento solare è di particelle per centimetro cubo: p/cm³. Un valore superiore a 20p/cm³ è un buon inizio per una tempesta geomagnetica.

Come abbiamo detto prima, diverse regioni del Sole producono vento solare di diverse velocità. I fori coronali producono un vento solare ad alta velocità, tra i 500 a gli 800 chilometri al secondo.
I poli nord e sud del Sole hanno fori coronali grandi e persistenti, quindi le alte latitudini del sole producono un vento solare veloce.
Nel piano equatoriale invece, dove orbitano la Terra e gli altri pianeti, il vento solare si allontana dal Sole a bassa velocità, circa 400 chilometri al secondo.
Questa parte del vento solare forma la "Corrente eliosferica diffusa".

Durante i periodi di calma, l'intensità della Corrente eliosferica diffusa può essere quasi piatto. Con l'aumentare dell'attività solare, la superficie del Sole si riempie di regioni attive, fori coronali e altre strutture complesse, che modificano così il vento solare e la Corrente eliosferica.
Scopri tutte queste formazioni nel nostro approfondimento: Cosa c'è sulla superficie delle stelle
Poiché il Sole ruota in 27 giorni, il vento solare diventa una spirale complessa con una alternanza di velocità e densità alte e basse. Questa alternanza crea un effetto simile alla gonna di una ballerina (vedi immagine).
Quando il vento solare ad alta velocità supera il vento a bassa velocità, crea una regione di altissima velocità ed intensità chiamata "regione di corotazione" che costituiscono la base di forti tempeste geomagnetiche.

Al di sopra della Corrente eliosferica diffusa, il vento solare ad alta velocità ha in genere una polarità magnetica dominante in una direzione, e al di sotto la polarità è nella direzione opposta.
Mentre la Terra si muove attraverso questa "gonna ballerina", a volte è all'interno della Corrente eliosferica, altre volte si trova sopra e altre ancora si trova sotto di esso.
Quando il campo magnetico del vento solare cambia polarità, è una forte indicazione che la Terra ha attraversato la Corrente eliosferica diffusa.
La posizione della Terra rispetto alla Corrente eliosferica è importante perché le conseguenze geomagnetiche dipendono fortemente dalla velocità del vento solare, dalla densità del vento solare e dalla direzione del campo magnetico incorporato nel vento solare.

Oggi lo strumento per eccellenza per la misurazione del vento solare è la sonda spaziale "Deep Space Climate Observatory (DSCOVR)".
Questa sonda è posizionata su un'orbita attorno al punto 1 di Lagrange Sole-Terra.
Puoi capire meglio cosa siano i punti di Lagrange e leggere una curiosità su quelli di Marte a questo approfondimento: Marte ospita i resti di un antico mini-pianeta nella sua orbita

Questo è un punto nello spazio che si trova sempre tra il Sole e la Terra dove la gravità del Sole e della Terra hanno un'uguale attrazione sulla sonda, il che significa che può rimanere in un'orbita stabile.
Questa sonda ci avvisi sulla struttura del vento solare con una anticipo che va dai 15 ai 60 minuti, a seconda della velocità delle particelle.

lunedì 27 agosto 2018

esplorazione Pianeti extrasolari via lattea
L'acqua non è così rara nell'universo. La nostra galassia, la Via Lattea, è straordinariamente piena di pianeti extra-solari ricchissimi di acqua.

I pianeti alieni di medie dimensioni, diciamo da due a quattro volte più grandi della Terra, tendono a ospitare enormi quantità di acqua.
Alcuni di questi mondi extra-solari hanno talmente tanta acqua che la loro massa è composta fino al 50% di acqua.
Per fare un esempio, la maggior parte della superficie del nostro pianeta è ricoperta di acqua, ciò nonostante la massa dell'acqua è solo dello 0,02% dell'intero pianeta.
Ora possiamo renderci conto di quanta acqua ci sia su alcuni pianeti extra-solari.

I dati raccolti dai programmi osservativi indicano che circa il 35% degli esopianeti conosciuti più grandi della Terra sono ricchi di acqua.
Questa affermazione si bassa su un modello che mette in relazione la massa dei pianeti e il loro raggio.
Questo modello mette in evidenza che i pianeti extra-solari con una dimensione di circa 1,5 volte la dimensione della Terra, o più piccoli, tendono ad essere rocciosi. Pianeti più grandi invece tendono ad essere più acquatici.
Anche nel sistema solare i pianeti più grossi della Terra sono principalmente gassosi.

I pianeti di questo tipo osservati fino ad ora, sono più vicini alla loro stella di quanto non lo sia la terra al Sole. Questo fa in modo che la loro temperatura superficiale si aggiri nell'intervallo da 200°C a 500°C.
La loro superficie liquida quindi potrebbe essere avvolta da un'atmosfera costituita principalmente da vapore acqueo, con uno strato di acqua liquida al di sotto.
Sotto alla superficie liquida invece l'acqua si troverebbe compressa da una pressione e da una gravità molto più alta di quella sul nostro pianeta, dovuta alle dimensioni più ampie del pianeta rispetto alla Terra.
Questa enorme compressione genera un particolare tipo di ghiaccio, sotto alla quale ci sarebbe il vero e proprio nucleo solido.
Il pianeta extra-solare Glise 436b è un esempio molto chiaro di quanto illustrato da questo modello.
Abbiamo parlato di questo fenomeno in modo dettagliato qui: Glise 436b: un pianeta che brucia il ghiaccio

La conferma di quanto questo modello sia valido la avremo con le osservazioni che farà il Il Transite Exoplanet Survey Satellite (TESS) della NASA, lanciato pochi mesi fa, che probabilmente troverà molti di questi mondi acquatici.

giovedì 23 agosto 2018

cielo profondo galassie quasar universo

Introduzione alle galassie oscure


Quando parliamo di galassie, pensiamo ad agglomerati luminosi e colorati di stelle, gas e polvere.
Ma nell'universo, in accordo con le previsioni della teoria del big bang, esistono anche galassie molto diverse da queste: le galassie oscure.


Prima di tutto: non si tratta di galassie composte di materia oscura.
Le galassie oscure sono galassie con pochissime stelle, o nella maggior parte dei casi non ne hanno proprio.
Sono costituite prevalentemente da gas denso che non è illuminato da stelle.
Come si può facilmente intuire questa loro caratteristiche le rende molto difficili da vedere e la loro esistenza, fino a pochi anni fa solo teorica, può essere percepita soltanto se sono vicine a oggetti molto luminosi. Ad esempio dei quasar.



Le galassie oscure, la maggior parte delle quali osservate a circa 10 miliardi di anni luce di distanza (e quindi vecchie di circa 10 miliardi di anni), costituiscono le fondamenta delle galassie che osserviamo oggi in tutto l'universo.
Per qualche ragione queste galassie non sono state in grado di formare stelle.
Alcuni modelli teorici prevedono che le galassie oscure siano state molto comuni nell'universo primordiale, quando le galassie avevano più difficoltà a generare le stelle perché la loro densità di gas non era sufficiente per collassare e accendere la scintilla di formazione stellare.
Soltanto in seguito le galassie hanno iniziato i processi di formazione stellare, diventando come le vediamo oggi.
Questa ipotesi sarebbe suggerita anche dal fatto che molte tra le galassie oscure conosciute si trovano a distanze che vanno dai 10 agli 11 miliardi di anni luce.
Questo significa che guardandole stiamo vedendo com'era l'universo 11 miliardi di anni fa.

A quell'epoca l'Universo nel suo complesso stava formando stelle ad un ritmo frenetico: circa 20 volte più veloce di oggi. Lo stesso periodo rappresenta anche un momento chiave per la formazione di grossi buchi neri, a causa della abbondanza di stelle molto massicce e dalla vita molto breve. Quei buchi neri che oggi osserviamo sotto le vesti di quasar luminosi.

Stiamo quindi parlando di un'epoca molto fertile, in cui abbiamo avuto galassie che sono maturate molto rapidamente e in cui il tasso di formazione stellare era molto forte.
Le galassie oscure osservate nello stesso periodo ci fanno pensare al fatto che esse siano state le progenitrici delle galassie: ciò che c'era prima che queste accendessero miliardi di stelle.

In poche parole le galassie oscure sono probabilmente gli elementi costitutivi delle galassie moderne. Inoltre le galassie oscure, durante le collisioni galattiche, portano alle grandi galassie una grande quantità di gas che finisce con l'accelerare la formazione stellare nelle galassie più grandi.

Anche la Via Lattea potrebbe essere stata una galassia oscura, che si è fusa con galassie oscure vicine dando vita alla formazione stellare e a tutto ciò che vediamo oggi nella nostra galassia.
In realtà anche molte piccole galassie satelliti al Gruppo Locale potrebbero essere tuttora delle galassie oscure. Gli astrofisici però su quest'ultimo punto rimangono molto cauti e non ci sono prove osservative in proposito.

Ma visto che le galassie oscure sono così difficili da osservare, come facciamo a vederle e ad osservarle?
La risposta sta nelle emissioni provenienti dall'idrogeno al loro interno.
Queste emissioni vengono generate quando la luce ultravioletta si riflette sul gas della galassia oscura e provoca l'eccitazione dei suoi atomi. per la verità l'universo è ricco di luce ultravioletta, ma di solito l'emissione risultante è molto debole.
Quindi per poter osservare le galassie oscure con questo metodo è necessario guardare in zone dove la luce ultravioletta è molto forte rispetto ai livelli di fondo. Per esempio nei pressi di un quasar.

martedì 31 luglio 2018

nebulose stelle supernovae via lattea

Distante 24.000 anni luce dalla terra, Cygnus X-3 è una delle più potenti sorgenti binarie di raggi-x del cielo.

Inizialmente gli astrofisici classificarono questo oggetto etichettandolo come micro-quasar.
Oggi invece sappiamo che si tratta di un sistema binario molto strano, ma non altrettanto raro.
Stiamo parlando di una stella molto grande, probabilmente una stella di Wolf-Rayet intorno alla quale ne sta orbitando una molto piccola ma estremamente massiccia: quasi sicuramente una stella di neutroni o, forse, un buco nero.
Pensate, questa stella di neutroni orbita attorno alla stella gigante in un periodo di appena 5 ore, detenendo così il primato di coppia binaria più veloce!
La potenza di questa coppia risiede come sappiamo nel fatto che la stella di neutroni, con la sua massa estrema sta pian piano divorando la superficie della compagna gigante.

Questo fenomeno genera una fortissima emissione di raggi-x e, nel lungo periodo, darà sicuramente luogo ad una fortissima esplosione di supernova: una supernova di tipo 1A.
Se pensiamo che anche la stella di neutroni della coppia si è formata molto probabilmente da una esplosione di supernova, ci accorgiamo che ci troveremo davanti ad un doppio evento di supernova.
Potete approfondire qui come si formano le supernovae: Come nascono le supernovae

Ma non è tutto, Cygnus X-3 è molto interessante anche come sorgente di raggi gamma, infrarossi e di onde radio.
E' una delle poche fonti di raggi cosmici ad altissima energia della nostra galassia. Più di una volta ha dato vita ad anomale ed insolite emissioni di raggi gamma che anno messo in discussione la sua origine, accendendo teorie secondo la quale la stella orbitante potrebbe non essere una stella di neutroni ma addirittura una esotica stella di quark!

Ma questo Mostro stellare non si è distinto solamente per le sue intense emissioni di raggi cosmici e raggi-x. Nel 1972 ad esempio, Cygnus X-3 ha dato spettacolo anche come emittente radio con una esplosione che ha aumentato l'emissione radioelettrica di mille volte rispetto alla sua media.
Ancora oggi non sappiamo dare una risposta a questa violentissima raffica di emissioni radio, ma da quella prima volta Cygnus X-3 ha iniziato ad avere esplosioni radio minori con una cadenza precisa di 367 giorni! Sappiamo che la velocità dell'onda d'urto di queste esplosioni è pari ad un terzo della velocità della luce!

Come avrete capito, stiamo parlando di un vero e proprio mostro celeste, un oggetto che emette radiazioni fortissime e con elevata velocità. E nei cui pressi la distorsione spazio-temporale è davvero forte.

Eppure, nei dintorni di questo oggetto a poche migliai di anni luce di distanza, sta nascendo un nuovo sistema Stellare.
E' stata infatti osservata una emissioni di raggi-x aggiuntiva, molto vicina a Cygnus X-3. Talmente vicina da essere stata confusa con una emissioni minore proveniente da Cygnus X-3.

Si tratta di una piccola nube oscura dal diametro di poco inferiore ad un anno lune. Questa nube si comporta come un piccolo specchio che riflette verso la terra alcuni raggi-x provenienti dalla vicina Cygnus X-3. Da qui il simpatico nome: "Il piccolo amico di Cygnus X-3"

Le osservazioni indicano che la massa di questa nube varia, in maniera molto imprecisa, tra 2 e 24 volte quella del Sole. All'interno, le osservazioni spettroscopiche hanno rilevato la presenza di monossido di carbonio.
Tutti questi indizi fanno pensare che si tratti di un globulo di bok. Questo significa che stiamo assistendo alla nascita di una stella e un conseguente sistema planetario a pochi anni luce da un mortale generatore di radiazioni cosmiche quale è Cygnus X-3!
A confermare la genesi di un sistema proto-planetario c'è anche la presenza di un getto energetico dall'interno del Piccolo Amico, una chiara indicazione che nei meandri del globulo di bok, una stella abbia già iniziato a formarsi.
Potete scoprire tutto quello che c'è da sapere sui globulo di bock qui: Cosa sono i globuli di bok?

Il piccolo amico di Cygnus X-3 offre un punto di vista completamente nuovo per lo studio di questi embrioni proto-planetari.
Solitamente studiamo i globuli di bok analizzando la luce che assorbono, oppure le deboli emissioni radio che producono. In questo caso invece possiamo studiare il bozzolo planetario sfruttando la riflessione dei raggi-x. Se ci aggiungiamo il fatto che con i suoi 20.000 anni luce di distanza è il globulo di bok più lontano osservato, be la cosa diventa davvero interessante!

Ma come facciamo a sapere la distanza di questo globulo di bok?
E' molto semplice, come abbiamo detto all'inizio, Cygnus X-3 dista dalla terra 24.000 anni luce, ed emette un fascio di raggi-x con una periodicità regolare di 5 ore. Quindi anche i raggi-x riflessi dal piccolo amico verso di noi hanno una regolarità di 5 ore, ma sono leggermente ritardati a causa della sua differente posizione.
E' proprio questo ritardo ad averci aiutato a calcolare con precisione la sua distanza.

La scoperta e la posizione del piccolo amico da delle conferme ad una teoria secondo la quale il sistema binario Cygnus X-3 non sia nato li dove lo vediamo adesso.
La teoria pone le sue radici nel fatto che una delle due componenti del sistema binario è una stella di Wolf-Rayet: una stella molto massiccia la cui vita è molto breve. Quindi essendo ancora nel pieno della sua esistenza la sua nascita non è molto lontana nel passato.
Ma questo tipo di stelle, di fatto molto giovani, si trovano nelle braccia a spirare delle galassie e della Via Lattea. Dove è presente ancora molto gas primordiale, in attesa della scintilla che dia origine alla nascita di stelle. Ma Cygnus X-3 si trova fuori dai bracci.

La spiegazione teorica che giustificherebbe questa presenza fuori luogo è che l'esplosione di supernova che ha dato origine alla stella di neutroni (o al buco nero) che ruota attorno alla stella di Wolf-Rayet sia avvenuta in realtà nel braccio vicino della Via Lattea, dove ad una distanza di 4.000 anni luce si trova anche "il piccolo amico", e sia stata talmente violenta da allontanare il sistema binario dal luogo iniziale, quella in cui si trova ancora oggi il globulo di bok. Ciò non significa che la stella di Wokf-Rayet sia nata dal "piccolo amico", ma che entrambe potrebbero essere nati da una stessa antica nube molecolare gigante di cui il globulo di bok ne è un rimasuglio.

Supponendo che Cygnus X-3 e il Piccolo Amico si siano formati, seppure indipendentemente, uno vicino all'altro, Cygnus X-3 dovrebbe essere stato gettato via ad una velocità comprese tra i 180 e 900 chilometri al secondo!

La prossima volta che guarderete la costellazione estiva del Cigno, pensate che vicino alla stella che unisce le ali al corpo, quella sotto Deneb, la stella che rappresenta la coda del Cigno, li vicino si trova questa stella di Wolf-Rayet intorno alla quale ruota o una stella di neutrini (o un buco nero) emettendo una altissima quantità di raggi-x, e il piccolo amico.
Costellazione:Cigno
Ascensione retta:20h 32m
Declinazione:+40° 57′
Distanza di Cygnus X-324.000 anni luce
Distanza del piccolo amico:20.000 anni luce

mercoledì 25 luglio 2018

comete Sistema solare


Le comete sono tra gli oggetti più intriganti del sistema solare. La sonda Rosetta ha raggiunto la cometa 97P ed a confermato molte ipotesi su questi oggetti e svelando diversi segreti sulla superficie delle comete. Ecco una panoramica approfondita di alcune caratteristiche trovate sulla superficie della cometa P97P.
Potete trovare la prima parte di questo con tante altre scoperte sulle comete qui:Rosetta e 97P, tutti i segreti della cometa - parte 1
Su una scala di 15-25 metri, la superficie della cometa 97P sembra essere molto omogenea e dominata dalle polveri e da molecole ricche di carbonio ma in gran parte priva di ghiaccio.
Su scale più grandi, su molte pareti rocciose sono sono state viste molte fratture con orientamenti e direzioni casuali.
La loro formazione è legata ai rapidi cicli di riscaldamento e di raffreddamento che si verificano nel corso delle giornate che sulla 97P dura solo 12 ore. E' chiaro quindi che gli sbalzi di temperatura alla quale è sottoposta la superficie dall'estremo freddo all'estremo caldo sono molto frequenti. Inoltre la cometa ha un orbita che dura circa 6 anni e mezzo, e questo fa si che si trovi per periodi molto prolungati in zone del sistema solare estremamente fredde (lontana dal sole), e altri periodi in cui si trova in zone molto calde (perielio). Un particolare molto interessante è stato visto sulla zona del "collo" tra i due lobi, dove è presente un crepaccio lungo 500 metri.
Questo crepaccio assieme al fatto che in questa zona ci sono le maggiori emissioni di materiale che compongono la coda fa pensare ai planetologi che probabilmente in futuro la 97P potrebbe spaccarsi proprio in questo punto e tornare ad essere costituita da due oggetti separati.

Un'altra caratteristica che Rosetta a rivelato è la presenza di grandi fori cilindrici che hanno l'aspetto pozzi (immagine sotto). Sono stati localizzati su uno dei due lobi. Questi pozzi quasi perfettamente cilindrici sembrano scavati per raggiungere le profondità del nucleo.
Questi pozzi hanno un diametro medio di circa 200m e sono profondi dai 100 ai 250 metri.
Elaborando le immagini a falsi colori, e confrontando queste zone sia nei momenti distanti che vicini al sole, i planetologi sono giunti alla conclusione questi da questi pozzi fuoriesce la maggior parte del materiale che genera la coda.



E non è tutto. Le immagini della Rosetta hanno scorto anche un altro ancora scientificamente ancora più interessante. Questo pozzo presenta sui bordi e sulle pareti interne delle specie di bolle solidificate. Perdonateci il paragone ma l'effetto è lo stesso che si ha guardando le pelle di una gallina spennata, o sulla pelle del braccio quando abbiamo la "pelle d'oca".
Queste conformazioni sembrano avvalorare la teoria con la quale oggi spieghiamo la formazione delle comete, e cioè che siano il risultato di un lungo agglomeramento di frammenti "avanzati" dalla formazione dei pianeti.

Durante le fasi di avvicinamento al sole la sonda Rosetta è riuscita anche a misurare il tasso di evaporazione che ha subito la 97P e ha calcolato che nei primi periodi di risveglio della coda la cometa perde circa 0,3 litri di acqua al secondo. Le cose ovviamente cambiano di molto nel periodo in cui la 97P si trova nei pressi del perielio: li la quantità di acqua che si riversa nella coda è di 1,5 litri al secondo che, come abbiamo già detto poco sopra, fuoriescono principalmente dalla zona del collo!

L'acqua che fuoriesce dalla cometa è accompagnata anche da altri gas, tra cui monossido di carbonio e anidride carbonica.
Osservando il fenomeno di formazione della coda da così vicino, Rosetta è riuscita a calcolare il rapporto della sua composizione tra gas e polveri, stimando che la massa dispersa nello spazio è costituita per 4/5 da polveri e da 1/5 da gas. La sonda ha anche monitorato il movimento dei granelli di polvere attorno alla cometa e li ha classificati in due distinte popolazioni.
Mentre la prima popolazione è composta da tutte quelle polveri che escono dalla cometa e si riversano nella cosa, la seconda popolazione rimane sospesa in orbita attorno alla cometa andando a costituire una sorta di atmosfera polverosa e molto rarefatta. Si pensa addirittura che le polveri più lontane siano rimaste in orbita dall'ultimo perielio della cometa.

E per finire veniamo alla composizione della cometa 97P.
La Rosetta ha riscontrato sulla superficie della cometa non solo la presenza di ossigeno, metano, vapore acqueo, monossido di carbonio e anidride carbonica. Ma anche acetilene, alcol, ammoniaca, amminoacidi, idrogeno solforato, metano e formaldeide. Tutte sostanze chimiche piuttosto tossiche e disgustosamente maleodorante.
Per cui... quando l'uomo passeggerà su una cometa, dovrà tenersi stretta una mascherina!

Potete trovare la prima parte di questo con tante altre scoperte sulle comete qui:Rosetta e 97P, tutti i segreti della cometa - parte 1

Tipo:Perseo
Origine stimata:Cintura di Kuiper
Periodo orbitale:11 anni
Dimensioni8km x 6kn | 21,4 km cubici
Massa10 miliardi di tonnellate
Densità:470 kg per metro cubo
Tasso di evaporazione:0,3 | 1,5 litri al secondo
ComposizionePolvere: 4/4 | Gas: 1/5
Composizione chimicaossigeno, metano, vapore acqueo, monossido di carbonio e anidride carbonica, acetilene, alcol, ammoniaca, amminoacidi, idrogeno solforato, metano e formaldeide


mercoledì 9 maggio 2018

ammassi stellari stelle via lattea

L'ammasso aperto Westerlund 1 ospita molte delle stelle più grandi e massicce conosciute! E' l'ammasso aperto più massiccio della Via Lattea. La stella più grande, Westerlund 1-26, è una supergigante rossa con un diametro 1.500 volte più ampio del Sole. Questa stella è talmente grande che se fosse al centro del Sistema Solare, arriverebbe quasi a lambire Saturno. E non è tutto, ci sono anche supergiganti rosse, ipergiganti gialle. Stelle enormi, più grandi si Aldebaran e di Betelgeuse. E assieme a questi giganti è stata trovata una Magnetar!

Questo splendido ammasso aperto si trova a circa 15.000 anni luce dal Sistema Solare, nella costellazione dell'Altare.
Le stelle super giganti che popolano questo angolo di Via Lattea hanno un'età di circa 3 milioni di anni: sono quindi tutte molto giovani rispetto al Sole che di anni ne ha 4,6 miliardi. E anche se è così giovane, i cosmologi prevedono che potrebbe presto diventare un cimitero di stelle morenti: un ammasso globulare.
Ma andiamo con ordine, perché le stranezze di questo ammasso sono davvero tante!

Grazie alla straordinaria popolazione di stelle supermassicce che ospita, Westerlund 1 offre un'opportunità unica per esplorare l'evoluzione di questi rari esemplari stellari:dalla nascita alla morte e oltre.
E rappresenta anche un caso unico di studio sulla formazione e l'evoluzione di un ammasso aperto che sembra destinato a evolversi velocemente in un ammasso globulare.
E questo è un fenomeno molto atipico se pensiamo all'evoluzione degli ammassi aperti e alle origini degli ammassi globulari.
Per capire meglio le stranezze di Westerlund 1, scopri qui le caratteristiche e le differenze degli ammassi aperti e degli ammassi globulari
All'interno di Wd1, ormai lo avete capito, troviamo un alto numero di stelle ipergiganti gialle. Queste stelle sono poco calde, ma molto massicce, con una massa che va dalle 20 alle 50 masse solari. Sono rarissime nella Via Lattea, perché a causa della loro massa elevata bruciano molto in fretta e hanno una vita estremamente breve.

Ma all'interno di Westerlund 1 sono state scoperte anche un alto numero di stelle supergiganti e ipergiganti blu.
Queste stelle, al contrario delle supergiganti gialle, sono stelle caldissime, la loro temperatura va dai 20.000 gradi centigradi ai 50.000 gradi centigradi. Per fare un paragone, il sole arriva a 6.000 gradi centigradi.
In generale, Il diametro di tutte queste stelle supergiganti e ipergiganti può raggiungere le centinaia di volte quelle del Sole. Alcune di esse superano il migliaio di diametri solari! Riuscite ad immaginarvi la differenza tra queste stelle e la nostra?
E sono tutte all'interno dello stesso ammasso aperto!

E non è tutto, all'interno di Westerlund 1 sono state anche identificate diverse stelle di Wolf-Rayet, particolari stelle supergiganti giunte ormai al termine della propria vita e che si stanno letteralmente dissolvendo proiettando nello spazio interstellare la propria massa ad una velocità che arriva fino ai 2.000 km/sec. La loro temperatura è inimmaginabile: arriva fino a 150/200 mila gradi centigradi!

Tutto questo fa di Wd1 un ammasso veramente mostruoso. Ma la ciliegina sulla torta la fa una Magnetar che si trova nelle periferia dell'ammasso.
Le Magnetar sono stelle ancora più massicce delle super e iper giganti. Esse sono allo stadio finale della propria esistenza e sono ancora più compresse e pesanti delle stelle di neutroni (pulsar). Sono dei veri e propri buchi neri mancati.

E qui nasce il primo mistero di Westerlund 1.
La presenza simultanea sia di stelle di Wolf-Rayet che di supergiganti rosse e azzurre è stata molto inaspettata per i cosmologi, e la Magnetar proprio non ha spiegazione di esistere.
La cosa che lascia veramente senza parole i cosmologi è che gli ammassi aperti, per definizione sono agglomerati di stelle molto giovani, appena formate dalla stessa nebulosa molecolare. Come è possibile quindi che all'interno di Wd1 stelle molto vecchie come le Wolf-Rayet e addirittura una Magnetar, si trovino a braccetto con stelle giovanissime come le compagne supergiganti azzurre?

L'unica spiegazione che i cosmologi riescono a darsi è che all'interno di Wd1 stiamo assistendo alla presenza di generazioni stellari differenti.
E questo rappresenta un secondo rompicapo. Infatti stelle di seconda o terza generazione sono stelle molto massicce generate dai resti di morti stellari precedenti, cioè gas espulsi da vecchie stelle morenti che si sono ricombinati a formare nuove stelle più pesanti.

Ma noi stiamo osservano un ammasso aperto, e in un ammasso aperto le stelle dovrebbero essere tutte di prima generazione. Infatti, il tempo necessario ad una stella per estinguersi, rilasciare il proprio materiale in maniera più o meno violenta, e dare luce a nuove stelle, sarebbe troppo lungo affinché l'ammasso aperto non si sia nel frattempo disperso.

Quindi, come far fronte a questi due misteri?
Forse, Wd1 potrebbe essere una rara regione di "starburst" intra-galattica. Cioè una zona all'interno della quale sta avendo luogo una formazione stellare a ritmi molto più intensi della norma.
Ma anche questa ipotesi perde acqua. Le osservazioni infatti sia nel visibile che ad altre lunghezze d'onda non rivelano né rimasugli nebulari e né fenomeni di formazione stellare, sia all'interno dell'ammasso che nei dintorni. Lo "starburst" è stato forse così rapido da essere già terminato?

Ma allora come si è formato Westerlund 1?
Le osservazioni di altre grandi regioni di formazione stellare sia all'interno della via lattea che in altre galassie, mostrano che gli ammassi stellari si formano in complessi più grandi, con chiare evidenze di rimasugli delle giganti nubi molecolari da cui hanno origine.
Un esempio chiaro di questo fenomeno lo troviamo nella nebulosa Tarantola, la più grande zona di formazione stellare conosciuta nel nostro gruppo locale di galassie, che con i suoi 500 anni luce di estensione ospita un numero elevato di ammassi aperti.

Partendo da questi presupposti sono state fatte osservazioni per cercare stelle o piccoli aggregati nei dintorni di Wd1. Il risultato? Nessuna stella, nessun rimasuglio nebulare: Inaspettatamente, Wd1 sembra essersi formato in uno isolamento totale, dal nulla!
Ma questa, tuttavia, non è stata l'unica sorpresa.
I cosmologi hanno anche analizzato le velocità radiali con la quale le stelle dei Westerlund 1 si muovo le une rispetto alle altre, ovvero la velocità di radiale nell'ammasso. E hanno scoperto che questa velocità è molto più alta di quanto ci si aspetterebbe in base alla sua dimensione!

Insomma, le osservazioni sembrano sollevare più domande che risposte attorno a questo angolo di Via Lattea che mette in imbarazzo i cosmologi.
Perché la velocità radiale di Wd1 attualmente è ancora così elevata? Forse Wd1 si è formato, o si sta ancora formando, attraverso la fusione di un certo numero di sotto-gruppi di stelle? Nonostante le sue stelle siano così giovani, Westerlund 1 sta già diventando rapidamente un ammasso globulare?
Come è stata accumulata così tanta massa in un così piccolo volume di spazio? Qual era la natura dell'agente fisico che ha portato alla sua apparentemente istantanea formazione, in una regione altrimenti spoglia della Galassia? Come mai al suo interno ci sono stelle giovanissime assieme a stelle molto più vecchie o addirittura di seconda e terza generazione?

Cosa ne sarà di Westerlund 1?
I cosmologi pensano che probabilmente, come accennato sopra, questo ammasso rimarrà sempre molto compatto e che potrebbe diventare un atipico ammasso globulare, formato dalle stesse stelle molto giovani e massicce a cui ha dato la luce.
Tuttavia il futuro di Westerlund 1 sarà sicuramente molto movimentato e "scoppiettante" grazie all'alto numero di Stelle doppie che sono state osservate al suo interno. Oggi abbiamo la certezza della presenza di oltre 70 esemplari di stelle binarie confermate.

Il ruolo che hanno le stelle binarie nell'evoluzione stellare è legata al fenomeno di "zombizzazione". Infatti come sappiamo l'interazione che avviene nei sistemi binari ha l'effetto di rimuovere prematuramente il mantello esterno ricco di idrogeno della stella principale; impedendo così una successiva transizione attraverso una fredda fase di ipergigante e impedendo la perdita di massa che caratterizza le stelle di wolf rayet di cui abbiamo parlato prima.
Quindi le stelle giganti binarie presenti all'interno di Westerlund 1 rappresentano, al contrario delle coinquiline singole di wolf rayet, la miccia che porterà presto alla formazione di luminosissime supernove di tipo 1A.

scopri qui il processo di formazione delle supernovae di tipo 1A
Questo significa che, considerate le mostruose masse di queste stelle, dopo le esplosioni all'interno di Wd1 avremo con buona probabilità anche un alta popolazione di stelle di neutroni e buchi neri!
Come conferma di questo scenario futuro, troviamo la potentissima Magnetar di cui abbiamo parlato prima.

Insomma, pare che Westerlund 1 oltre a stupirci adesso darà anche un grande spettacolo nel futuro!




sabato 14 aprile 2018

esplorazione Giove Sistema solare

Le ultime scoperte su Giove

Una visione 3D dei cicloni del polo nord di Giove e una mappa dettagliata del campo magnetico. Ecco i progressi della sonda Juno sullo studio del re del Sistema Solare.

La sonda Juno è stata lanciata verso Giove il 5 agosto 2011. Il 5 luglio 2016, dopo 5 anni di viaggio interplanetario, è arrivata a destinazione ed ha iniziato ad inviare dati preziosissimi sul re dei pianeti.
Nonostante il termine della sua missione sia stata stimata per il febbraio 2018, la sonda sta ancora continuando ad inviare dati!
Oggi, Aprile 2018, ha compiuto circa 200 milioni di chilometri nell'orbita di Giove.

Quello che vi mostriamo oggi in questo video della NASA rappresenta i progressi compiuti dai planetologi nello studio dell'atmosfera di Giove.


In particolare stiamo guardando una visione 3D dell'atmosfera sopra al polo nord del pianeta, osservata nell'infrarosso. Questa visione consente di riprendere i segnali delle temperature provenienti dalle nubi del pianeta.
In questa regione ci sono cicloni anticicloni molto densi e ravvicinati. Le immagini in 3D di questi cicloni hanno una profondità che arriva fino a 70 chilometri sotto al limite superiore delle nubi.
E' evidente che il polo nord di Giove è dominato da un ciclone centrale circondato da ben otto cicloni circumpolari.
Le dimensioni di questi cicloni? vanno dai 4.000 a 4.600 chilometri, stranamente hanno estensioni simili ai grandi cicloni tropicali che si verificano sulla Terra.
Le aree gialle sono più calde e quindi più profonde nell'atmosfera di Giove, e hanno temperature di -13° C. Invece le aree scure sono più fredde e più ad alta quota nell'atmosfera: li la temperatura è di -83° C.
Prima che Juno raggiungesse il pianeta, non avevano idea di come fossero i poli di Giove, perché la sua angolazione non ci permette dalla terra una visuale favorevole. Ma con i sorvoli ravvicinati sopra i poli ad una distanza così ravvicinata, l'umanità sta raccogliendo immagini a infrarossi che permetteranno di studiare nel dettaglio i modelli meteorologici polari del più grande pianeta del Sistema Solare.



Juno sta anche iniziando a rivelare come siano gli strati più interni della straordinaria atmosfera Geoviana e quali siano i meccanismi che guidano la rotazione delle grandi bande che osserviamo da decenni dalla Terra.
Juno ha confermato che queste grandi fasce ruotano a velocità diverse e variabili, e ha misurato la loro estensione per circa 3.000 chilometri.
Nelle bande l'idrogeno diventa abbastanza conduttivo da essere trascinato in una rotazione quasi uniforme all'interno di ognuna di esse dal potente campo magnetico del pianeta.

Gli stessi dati usati per analizzare la rotazione di Giove contengono informazioni sulla struttura e sulla composizione interna del pianeta.
Nel secondo video che vi proponiamo, pubblicato dai ricercatori NASA, è stata ricostruita una visione dettagliata del motore che alimenta il campo magnetico di Giove.
Le osservazioni di Juno stanno permettendo la costruzione di un modello per rappresentare il campo magnetico partendo dalle misurazioni effettuate durante otto orbite della sonda.
Da queste osservazioni sono state costruite mappe sia del campo magnetico in superficie che nelle regioni più profonde, dove i planetologi pensano che abbia veramente origine il campo.
Va sottolineato che siccome Giove è un gigante gassoso, per "superficie" si intende il raggio esterno della sua atmosfera, che è di circa 71.450 chilometri.

Queste mappe hanno rivelato irregolarità del campo magnetico inaspettate. Regioni con un'intensità sorprendente affiancate da regioni ad intensità molto più modesta.
Inoltre grazie a Juno sappiamo che il campo magnetico di Giove è più complesso nell'emisfero settentrionale che nell'emisfero meridionale.
Circa a metà strada tra l'equatore e il polo nord si trova un'area in cui il campo magnetico è intenso e positivo. Questa zona però è immersa in aree meno intense e di segno negative.
Nell'emisfero meridionale, invece, il campo magnetico è costantemente negativo, e diventa sempre più intenso a mano a mano che ci spostiamo dall'equatore verso il polo.
Le aree rosse nel video mostrano le linee del campo magnetico che emergono dal pianeta, mentre le aree blu mostrano dove il campo magnetico si tuffa nuovamente nel pianeta.
E' facile notare come i punti in cui nasce il campo magnetico non abbiano per niente una disposizione regolare, ma siano comunque tutti molto prossimi al polo nord.
Diversamente, i punti in cui le fasce magnetiche tornano nel pianeta non si trovano solo nelle zone del polo sud, come ci si aspettava, ma anche nelle zone equatoriali.

Da cosa derivano queste differenze in un pianeta rotante che è generalmente considerato più o meno fluido? I planetologi stanno ancora lavorando a questo enigma e sicuramente Juno sarà loro di grande aiuto!

venerdì 13 aprile 2018

asteroidi Luna Sistema solare

Precisiamo, la quasi seconda luna della Terra. Il dubbio è venuto alla NASA stessa osservando uno strano corpo celeste che sembra orbitare attorno alla terra oltre alla Luna.
Stiamo parlando di 2016-HO3, un asteroide avvistato e scoperto dalla NASA durante le ricerca di asteroidi a rischio impatto per la Terra.
Si tratta di un asteroide davvero molto difficile da osservare e studiare: infatti sebbene il diametro di 2016-H03 non sia ancora molto chiaro, sarebbe però compreso tra i 40 metri e gli 80 metri.

Secondo le osservazione del "centro di osservazione degli oggetti vicino alla Terra" (NASA cneos), durante i periodi di massimo avvicinamento al nostro pianeta , 2016-H03 raggiunge una vicinanza pari a 56 volte la distanza Terra Luna. Non è poi così vicino.
La magnitudine di 2016-H03 invece è di circa 22! Per farvi capire quanto debole sia la sua luminosità pensate che le stelle più deboli visibili ad occhio nudo, in cieli molto scuri e senza inquinamento luminoso, hanno una magnitudine pari a 5. Le stelle invece più deboli che si riescono a vedere con un binocolo arrivano fino a 9. Plutone, che si trova ai margini della zona planetaria del Sistema Solare, raggiunge una magnitudine di 16.
Scopri i confini del sistema solare qui: quanto è grande il Sistema Solare. Scoprirai anche che Plutone "non è affatto lontano".
Ecco perchè si tratta di un oggetto così difficile da osservare, stiamo parlando di un asteroide grande come un campo da calcio, distante da noi 56 volte la luna, luminoso molto meno di Plutone.
Volete osservarlo? trovate le coordinate aggiornate a questo indirizzo.

Ma perché la NASA stessa ha battezzato 2016-H03 come "quasi luna" ?
In realtà, pur essendo uno stretto compagno della Terra, questo asteroide ruota attorno al Sole come tutti gli altri, e non intorno alla Terra.
La sua orbita però si accosta molto all'orbita terreste, e mentre la percorre, 2016-H03 viene fortemente perturbato dal nostro pianeta a causa della sua vicinanza e della sua posizione.
Questo fa si che oltre a ruotare attorno alla nostra Stella, 2016-H03 ruoti apparentemente anche attorno al nostro pianeta.
Come è possibile tutto ciò? Ce lo spiega molto chiaramente e senza tante parole questa animazione realizzata dalla Nasa.


Diametro:40 / 80 metri
Distanza:56 volte Terra-Luna
Magnitudine:22
Periodo di rotazione:1 anno