venerdì 14 dicembre 2018

#bestOf2018 #Comete #Giove #SistemaSolare
Lo schianto su Giove della cometa Shoemaker-Levy 9 è stato in assoluto l'evento astronomico più spettacolare osservato dagli astronomi contemporanei. Ciò che ha reso unico l'impatto della Shoemaker-Levy su Giove non è stata solo la partecipazione dei due protagonisti, ma anche il fatto che la Shoemaker-Levy 9 è stata una cometa tutt'altro che ordinaria!!
Che le comete siano bizzarre ormai lo sappiamo, ma la Shoemaker-Levy 9 ha avuto qualcosa di veramente unico: un nucleo formato da una dozzina di elementi e un'orbita assolutamente anormale.

Proprio così, La Shoemaker-Levy 9 è stata con molta probabilità una cometa geoviana.
Fu scoperta nel Marzo del 1993, e già dalle prime osservazione è risultata una cometa più anomala delle altre.
per capire come sono fatte le comete, da dove vengono, e perché sono oggetti stravaganti ed imprevedibili puoi seguire questo link: Le comete del Sistema Solare
Già dopo le prime osservazione seguenti la sua scoperta, fu subito chiaro che la cometa Shoemaker-Levy 9 non stesse orbitando attorno al Sole.
Bastano poche osservazione per calcolare l'orbita di un oggetto astronomico che ruota attorno al sole, ma dopo le prime osservazioni di questo oggetto gli astronomi giunsero, non senza stupore, a constatare che la cometa Shoemaker-Levy 9 stava orbitando attorno a Giove!!
Avete capito bene, l'orbita della Shoemaker-Levy 9 era attorno a Giove

Ecco perché un attimo fa abbiamo affermato che la Shoemaker-Levy 9 è stata, probabilmente, una cometa geoviana.
Le comete geoviane sono comete con orbite molto piccole, più piccole dell'orbita di Giove.
I planetologi sono convinti che la Shoemaker-Levy 9 sia stata una di queste, e che durante un suo afelio (punto più lontano dal sole), si sia avvicinata troppo a Giove e sia rimasta vittima della sua forza di gravità.
Con tutta probabilità fu proprio questo evento che portò la cometa Shoemaker-Levy 9 ad orbitare attorno a Giove.
E questo, è solo uno dei fatti sorprendenti riguardanti la Shoemaker-Levy 9.
Un altro elemento che rende unica la cometa Shoemaker-Levy 9 è che il suo nucleo era composto da più di una quindicina di elementi distinti.
Era come vedere una formazione aerea muoversi compatta lungo l'orbita.
In origine, anche la Shoemaker-Levy 9 era composta da un unico nucleo come il resto delle comete. Ma durante i suoi perieli deve aver incontrato una pressione gravitazionale tale, presa dai due fuochi tra Giove ed il Sole, da non aver retto ed essersi spaccata!
Molto probabilmente questa rottura è avvenuta nel Luglio 1992, periodo in cui si è trovata in una posizione tra il Sole e Giove in cui le forze gravitazionali erano molto forti.
Si stima che in questa occasione la Shoemaker-Levy 9 sia passata a 96.000 chilometri dal centro di Giove, il che vuol dire a 25.000 chilometri dalla superficie delle sue nubi. Per fare un paragone facilmente comprensibile, la Luna dista dalla Terra 384.400 chilometri, la Shoemaker-Levy 9 è passata vicina a Giove ad una distanza pari ad 1/15 della distanza Terra-Luna!!

E poi c'è il gran finale. L'evento straordinario per la quale tutti ricordano questa cometa.
Dopo le prime osservazioni dal momento della sua scoperta, la comunità scientifica, che in quei giorni aveva tutti gli occhi puntati verso Giove, capì subito che la sua orbita peculiare avrebbe portato la Shoemaker-Levy 9 a schiantarsi su Giove.
In un primo momento si cercò un errore nei calcoli, ma fu presto chiaro che di errori non ce n'erano. Anche perché se pochi mesi prima era passata così vicina a Giove, una collisione non era poi così improbabile al prossimo giro.
Probabilmente l'evento che spezzò il nucleo della Shoemaker-Levy 9 in una dozzina di elementi diede anche dato uno scossone alla sua orbita modificandola, e portandola a finire diritta sul pianeta.

In poche parole, nel momento della sua scoperta, la fine della Shoemaker-Levy 9 era già segnata.
La data dell'impatto è stata prevista per il 9 luglio.
Fu tutt'altro che un impatto singolo.
Le danze iniziarono con qualche giorno di ritardo: il 16 luglio 1994. Dopo l'impatto dei primi corpi più grandi del nucleo, l'evento continuò per altri 5 giorni, producendo una vera e propria pioggia cometaria.

Le collisioni non avvennero sul lato visibile di Giove, ma appena al di là della linea che delimitava la parte di fronte alla terra da quella nascosta.
Ma anche se sono avvenute sul lato nascosto del gigante gassoso, si sono verificate abbastanza vicine al "terminatore" mattutino, laddove la superficie Giove si stava muovendo verso la visibilità Terrestre.
Questo colpo di fortuna planetario ha permesso comunque alla comunità scientifica di osservare i siti degli impatti pochissimi minuti dopo l'evento.
I frammenti del nucleo della Shoemaker-Levy 9 si schiantarono su Giove alla velocità di 221.000 km/h!
Fortunatamente la navicella spaziale Galileo, della NASA, era in rotta verso Giove, e fu in grado di osservare il lato notturno del pianeta vedendo in diretta gli impatti.

Fu straordinario, l'atmosfera del gigante gassoso nelle zone di impatto venne bucata e rivoltata come un calzino.
Oltre a praticamente tutti i telescopi presenti sulla Terra, professionali e amatoriali, gli astronomi utilizzarono anche il telescopio spaziale Hubble.
Le osservazioni nell'ultravioletto di Hubble mostrano chiaramente il movimento delle particelle di detriti molto fini che, dopo l'impatto rimasero sospese nella zona alta dell'atmosfera e la loro osservazione fornì le prime informazioni sui venti ad alta quota di Giove.
Nel rimescolamento atmosferico risultante, emersero anche composti solforati come l'idrogeno solforato e l'ammoniaca.
Gli effetti dell'impatto sull'atmosfera di Giove sono stati veramente straordinari dal punto di vista scientifico.

Circa un terzo dei frammenti produsse effetti poco visibili, suggerendo che fossero molto piccoli, probabilmente con diametri inferiori a 100 metri.
Ma gli altri, beh furono delle vere catastrofi.
Gli elementi più pesanti del nucleo della Shoemaker-Levy 9, si schiantarono ad intervalli di circa sette ore, esplodendo e generando una fortissima energia.
Le esplosioni crearono delle vere e proprie bolle di fuoco, grandi centinaia di chilometri.
Sopra a queste bolle si alzarono enormi nuvole scure, per migliaia di chilometri, simili a cumulo nembi temporaleschi, ma molto più grandi!
Nubi contenenti enormi quantità di polveri organiche provenienti dai corpi cometari distrutti.
Il tutto avvenne in maniera ordinata ed allineata, sul 44° parallelo sud di Giove.
Il frammento più grande, il 7° in ordine di caduta, aveva un diametro stimato di appena 600 metri. Eppure gli effetti sull'atmosfera di Giove furono devastanti: ha lasciato dietro di se una nuvola nera multistrato più grande del diametro del nostro pianeta!
Pensate a cosa sarebbe potuto succedere se la Shoemaker-Levy 9 fosse caduta sulla Terra.
Le nuvole scure lasciate dai frammenti erano in realtà luminosissime nell'infrarosso, dimostrando che avevano raggiunto temperature incredibilmente alte. Temperature che rimasero tali per diversi giorni.
Quando iniziarono a raffreddarsi rimasero visibili ancora per settimane.
Soltanto un mese e mezzo dopo la collisione i siti dell'impatto iniziarono a sbiadire e le bande di Giove a tornare alla normalità.

Ma non è tutto.
Anche il finissimo anello di Giove venne increspato e distorto durante il passaggio della Shoemaker-Levy 9 negli attimi prima dello schianto. L'anello si inclinò addirittura di circa 2 km.
Nel 2011, quasi vent'anni dopo l'impatto, la sonda New Horizons ha rilevano ancora dei disturbi all'interno dell'anello! Ovviamente le distorsioni osservate dalla New Horizons potrebbero anche essere state provocate da impatti minori con asteroidi avvenuti di recente, ma è molto probabile che siano ancora conseguenze della Shoemaker-Levy 9.

Gli astronomi sanno che gli impatti su Giove sono abbastanza comuni.
Nei decenni successivi alla Shoemaker-Levy 9, la tecnologia fotografica è migliorata parecchio e ha permesso agli astronomi amatoriali e agli astrofili di scattare foto e video di Giove ad alta risoluzione. Negli ultimi anni molti di loro hanno assistito e documentato decine di impatti come ad esempio nel 2009, 2010 , 2012, 2016 e 2017.

L'impatto della Shoemaker-Levy 9 è stato molto importante per l'umanità, oltre che per la sua spettacolarità, anche perché ha dato all'uomo la consapevolezza che la vita sulla terra non è così scontata.
Da quel giorno abbiamo capito che potremmo estinguerci da un momento all'altro, e in un battito di ciglia.
Le organizzazioni spaziali hanno avviato programmi osservativi per individuare con anticipo eventuali impatti con la Terra.
Ma cosa ancora più importante, gli organi governativi hanno capito che la ricerca in questa direzione va aiutata e finanziata.




sabato 14 aprile 2018

#Esplorazione #Giove #SistemaSolare

Le ultime scoperte su Giove

Una visione 3D dei cicloni del polo nord di Giove e una mappa dettagliata del campo magnetico. Ecco i progressi della sonda Juno sullo studio del re del Sistema Solare.

La sonda Juno è stata lanciata verso Giove il 5 agosto 2011. Il 5 luglio 2016, dopo 5 anni di viaggio interplanetario, è arrivata a destinazione ed ha iniziato ad inviare dati preziosissimi sul re dei pianeti.
Nonostante il termine della sua missione sia stata stimata per il febbraio 2018, la sonda sta ancora continuando ad inviare dati!
Oggi, Aprile 2018, ha compiuto circa 200 milioni di chilometri nell'orbita di Giove.

Quello che vi mostriamo oggi in questo video della NASA rappresenta i progressi compiuti dai planetologi nello studio dell'atmosfera di Giove.
Loading...

In particolare stiamo guardando una visione 3D dell'atmosfera sopra al polo nord del pianeta, osservata nell'infrarosso. Questa visione consente di riprendere i segnali delle temperature provenienti dalle nubi del pianeta.
In questa regione ci sono cicloni anticicloni molto densi e ravvicinati. Le immagini in 3D di questi cicloni hanno una profondità che arriva fino a 70 chilometri sotto al limite superiore delle nubi.
E' evidente che il polo nord di Giove è dominato da un ciclone centrale circondato da ben otto cicloni circumpolari.
Le dimensioni di questi cicloni? vanno dai 4.000 a 4.600 chilometri, stranamente hanno estensioni simili ai grandi cicloni tropicali che si verificano sulla Terra.
Le aree gialle sono più calde e quindi più profonde nell'atmosfera di Giove, e hanno temperature di -13° C. Invece le aree scure sono più fredde e più ad alta quota nell'atmosfera: li la temperatura è di -83° C.
Prima che Juno raggiungesse il pianeta, non avevano idea di come fossero i poli di Giove, perché la sua angolazione non ci permette dalla terra una visuale favorevole. Ma con i sorvoli ravvicinati sopra i poli ad una distanza così ravvicinata, l'umanità sta raccogliendo immagini a infrarossi che permetteranno di studiare nel dettaglio i modelli meteorologici polari del più grande pianeta del Sistema Solare.



Juno sta anche iniziando a rivelare come siano gli strati più interni della straordinaria atmosfera Geoviana e quali siano i meccanismi che guidano la rotazione delle grandi bande che osserviamo da decenni dalla Terra.
Juno ha confermato che queste grandi fasce ruotano a velocità diverse e variabili, e ha misurato la loro estensione per circa 3.000 chilometri.
Nelle bande l'idrogeno diventa abbastanza conduttivo da essere trascinato in una rotazione quasi uniforme all'interno di ognuna di esse dal potente campo magnetico del pianeta.

Gli stessi dati usati per analizzare la rotazione di Giove contengono informazioni sulla struttura e sulla composizione interna del pianeta.
Nel secondo video che vi proponiamo, pubblicato dai ricercatori NASA, è stata ricostruita una visione dettagliata del motore che alimenta il campo magnetico di Giove.
Le osservazioni di Juno stanno permettendo la costruzione di un modello per rappresentare il campo magnetico partendo dalle misurazioni effettuate durante otto orbite della sonda.
Da queste osservazioni sono state costruite mappe sia del campo magnetico in superficie che nelle regioni più profonde, dove i planetologi pensano che abbia veramente origine il campo.
Va sottolineato che siccome Giove è un gigante gassoso, per "superficie" si intende il raggio esterno della sua atmosfera, che è di circa 71.450 chilometri.

Queste mappe hanno rivelato irregolarità del campo magnetico inaspettate. Regioni con un'intensità sorprendente affiancate da regioni ad intensità molto più modesta.
Inoltre grazie a Juno sappiamo che il campo magnetico di Giove è più complesso nell'emisfero settentrionale che nell'emisfero meridionale.
Circa a metà strada tra l'equatore e il polo nord si trova un'area in cui il campo magnetico è intenso e positivo. Questa zona però è immersa in aree meno intense e di segno negative.
Nell'emisfero meridionale, invece, il campo magnetico è costantemente negativo, e diventa sempre più intenso a mano a mano che ci spostiamo dall'equatore verso il polo.
Le aree rosse nel video mostrano le linee del campo magnetico che emergono dal pianeta, mentre le aree blu mostrano dove il campo magnetico si tuffa nuovamente nel pianeta.
E' facile notare come i punti in cui nasce il campo magnetico non abbiano per niente una disposizione regolare, ma siano comunque tutti molto prossimi al polo nord.
Diversamente, i punti in cui le fasce magnetiche tornano nel pianeta non si trovano solo nelle zone del polo sud, come ci si aspettava, ma anche nelle zone equatoriali.

Da cosa derivano queste differenze in un pianeta rotante che è generalmente considerato più o meno fluido? I planetologi stanno ancora lavorando a questo enigma e sicuramente Juno sarà loro di grande aiuto!