Vieni a scegliere la tua maglietta!

martedì 18 giugno 2019

#Stelle #ViaLattea

Nuove osservazioni hanno ridisegnato i confini della Via Lattea nello spazio. Quanto è grande quindi la Via Lattea? e come facciamo a dirlo?

Fino a poco tempo fa la comunità scientifica concordava su una dimensione della Via Lattea per un diametro di circa 160.000 anni luce.

Oggi nuove osservazioni spingono ancora più in la questa stima.
Stiamo parlando nello specifico della zona con maggiore rapporto dimensione/densità di stelle, cioè del diametro del disco della Via Lattea.
Una galassia a spirare come la nostra è infatti composta da diverse regioni distinte, che ne determinano la morfologia e la forma caratteristica che siamo abituati a vedere nelle foto del telescopio spaziale Hubble.
Abbiamo parlato nel dettaglio di queste regioni al link: morfologia della Via Lattea

Il disco è quella parte della galassia composta dalle spirali, che si sviluppa dal nucleo e arriva fino alle punte più estreme delle spirali.
Più avanti in questo articolo vi faremo anche capire come trovare nel cielo questa zona della Via Lattea.

Ma tornando alle dimensioni, come misuriamo il diametro della Via Lattea dato che viviamo al suo interno?
Fino a poco tempo fa il metodo di misurazione usato era prevalentemente quello delle "candele cosmiche".
Questo metodo si basa sul principio che alcuni oggetti cosmici hanno una luminosità (Magnitudine assoluta) ben precisa. Un esempio sono le stelle Cefeidi.
Conoscere la luminosità assoluta di queste stelle ci consente di misurare la loro distanza.
Per fare un paragone, sapendo quanto è luminosa una torcia posta a 10 metri di distanza da noi, e in che modo la luminosità cambia sulle distanze, possiamo calcolare dove si trova determinando quanta luminosità perde la torcia quando la vediamo in un dato punto lontano da noi.

Quindi, una volta valutata la luminosità apparente di una stella Cefeide, è possibile calcolare la sua distanza, e se si trovano verso una spirale, possiamo calcolare quanto si allontana la spirale dal centro galattico.
Ma questo metodo presenta dei limiti, perché se non ci sono candele cosmiche sul margine estremo del disco, non abbiamo una misura precisa di quel punto.

Ecco perché questa volta gli astronomi hanno usato un metodo basato sulla composizione delle stelle.
Per stimare la dimensione del disco della Via Lattea sono state osservate centinaia di stelle sul piano galattico e sono stati studiati i loro spettri.
Lo spettro di una stella rappresenta la scomposizione della sua luce in diversi colori.
Analizzando questi colori si arriva a capire quali elementi sono presenti all'interno di una stella.

Ora, quando guardiamo una stella in direzione del disco della Via Lattea, facciamo molta fatica a capire se questa si trova nel disco oppure no, per ragioni prospettiche, nell'alone. (per sapere cos'è l'alone vedi link sopra)
Ma sappiamo però che tutte le stelle del disco hanno una metallicità molto simile, cioè i loro spettri mostrano una quantità di metalli molto simili tra loro.
Questo è dovuto principalmente alla loro età e alla loro generazione.

Ciò che ha ridefinito i confini della Via Latteo sono state le osservazioni spettrali di alcune centinaia di piccole stelle, molto lontane rispetto al vecchio limite del disco, che però hanno la stessa composizione delle stelle notoriamente presenti nel disco.
La conclusione è che quasi sicuramente queste stelle non si trovino spaiate nell'alone ma siano ancora all'interno del disco galattico, in una zona estremamente remota.
Queste nuove misurazioni portano le dimensioni del diametro del disco a 200.000 anni luce: 40.000 anni luce più grande di quanto si pensasse prima.
Per fare un paragone con la posizione del Sole, che come sappiamo è piuttosto periferico rispetto al centro della Via Lattea, le stelle del disco appena scoperte si trovano circa tre volte più lontane.

E non è tutto, è probabile che ci siano altre stelle del disco ancora più lontane, fino a quattro volte più in là rispetto al sole.
Le prossime volte che guarderete la Via Lattea in direzione dei bracci esterni che si vedono nelle costellazioni del Cefeo, di Cassiopea, o di Orione, sappiate che il vostro sguardo sta guardando vero i margini esterni della nostra galassia, e che ci sono stelle molto deboli, che sicuramente non vedrete ad occhio nudo, ma che sono proprio sui confini galattici!
Questo link ti può aiutare a capire cosa vediamo guardando la Via Lattea nel cielo: Cosa vediamo della Via Lattea?



giovedì 14 marzo 2019

#BuchiNeri #Galassie #starburst #Stelle #Supernovae #Universo

galassie starburst


Che cos'è, e che cosa scatena il fenomeno dello starburst galattico? e come facciamo a sapere che è in corso?

Le galassie sono piene zeppe di stelle. In questa epoca dell'Universo, molte sono quelle che muoiono e si spengono in modo più o meno cruento e spettacolare. Poche invece nascono e si accendono come flebili lucine viste appena in lontananza.
Ma in alcune galassie queste lucine si accendono ancora a ritmi veritiginosi (astronomicamente parlando) e l'effetto che abbiamo dalla Terra è simile a quello che avremmo guardando i fuochi d'artificio in un paese lontano all'orizzonte.

Proprio così, le galassie starburst sono galassie in cui, in questo momento, il tasso di formazione stellare è molto più alto della media. Ovviamente questo fenomeno non è perenne, non è sempre stato così frequente, e non lo sarà per sempre.

Anzi, queste esplosioni durano per un breve periodo rispetto alla lunga vita della galassia, perché la formazione stellare brucia molto rapidamente e voracemente il gas che trova nelle zone della galassie interessata.
Terminato il combustibile, o la spinta che ha innescato il fenomeno, lo starburst si affievolisce e tutto torna alla normalità.

Ciò che accomuna le galassie starburst è che il tasso di formazione stellare è incoerente con l'età della galassia.
Finché parliamo di formazione stellare in galassie molto lontane, e quindi molto giovani nell'universo, il fenomeno di starburst è piuttosto normale, poiché le giovani galassie appena formatesi all'inizio dell'universo ospitavano molto più gas di quanto non ne ospitino oggi. Quindi la formazione stellare era per forza molto frequente.

Ma ai nostri tempi, e quindi nelle galassie a noi più prossime, il gas primordiale si è consumato quasi tutto, tranne in alcune sacche in cui vediamo splendide nebulose.
Quindi un tasso di formazione stellare molto alto è del tutto anomalo paragonato all'età delle galassie odierne. La maggior parte delle galassie, oggi semplicemente non dovrebbe avere abbastanza gas per continuare l'azione dello starburst iniziale allungandolo per miliardi di anni.
Abbiamo parlato qui delle nebulose primordiali e di come sono fatte

Ma allora cosa innesca lo starburst nelle galassie odierne?
Alcune galassie, poche a dire il vero, possono avere velocità di formazione stellare superiori al normale semplicemente perché hanno volumi di gas e polvere ancora molto alti.
Ma questi sono casi rari e, come detto, la maggior parte delle galassie oggi non hanno le riserve di gas per giustificare uno starburst.
Quindi l'avvio di uno starburst oggi è innescato da alcuni eventi specifici.

Nella maggior parte dei casi questo evento è costituito dalla fusione di due galassie.
Durante la fusione tra due o più galassie, i gas delle protagoniste vengono mescolati insieme e aumentano di volume.
In più la collisione ed il mescolamento provocano onde d'urto che comprimono i gas e scatenano raffiche di formazioni stellari.
Ricordiamo poi che le fusioni tra galassie durano moltissimi anni, e le perturbazioni gravitazionali che iniziano ad affiorare durante le prime fasi possono generare abbastanza onde d'urto per innescare uno starburst anche in galassie apparentemente non in fase aperta di collisione.

Un'altra causa di innesco di starburst è costituita da frequenti esplosioni di supernovae e/o ipernovae.
Quando una supernova esplode genera onde d'urto nello spazio interstellare circostante per migliaia di anni luce. Se in una galassie esplodono molte supernovae in periodi relativamente brevi, ecco che le onde d'urto possono diventare abbastanza forti da accendere degli starburst se incontrano vaste zone nebulari.
Ovviamente affinché ciò avvenga è necessario che il gas primordiale ancora presente nella galassia sia abbastanza.
A questo link puoi capire cosa porta una stella ad esplodere in una potente supernovae: Cosa sono le supernove e perché sono così importanti per l'uomo?

Ma la causa più impensabile di starburst è rappresentata dai Nuclei Galattici Attivi. Sappiamo ormai per certo che la maggior parte delle galassie ospitano uno o più buchi neri supermassicci nel loro nucleo.
Se il buco nero non è attivo, la sua presenza assorbe energia e rallenta l'attività di formazione stellare della galassia. Ma se il buco nero in questione è attivo, allora può al contrario innescare una rapida formazione stellare. Il suo disco di accrescimento infatti, oltre a ingurgitare decine di masse solari, espelle a sua volta una grande quantità di materia attraverso i suoi poli magnetici, riciclando materia e creando enormi onde d'urto. E ancora una volta ecco gli elementi fondamentali per accendere la formazione stellare.
Per capire che differenza c'è tra i buchi neri attivi e quelli non attivi, e cosa sono i nuclei galattici attivi, potete leggere questo approfondimento sui Quasar

Infine c'è il così detto fenomeno dell' "accrescimento da flusso freddo", di cui sappiamo ancora poco ma che probabilmente sta coinvolgendo anche la nostra Via Lattea.
Ma su questo fenomeno abbiamo dedicato un intero approfondimento qui: Una seconda vita per la Via Lattea

Come si capisce se una galassia sta vivendo uno starburst?
Per capire se una galassia relativamente vicina stia attraversando uno starburst, si confronta il suo tasso di formazione stellare con il suo periodo di rotazione.
Se per esempio, la galassia esaurisce tutto il gas disponibile durante una rotazione, significa che il suo tasso di formazione stellare è molto alto e si può considerare una galassia starburst.
La Via Lattea compie una rotazione ogni 220 milioni di anni, alcune galassie ruotano molto più velocemente, altre più lentamente, ma in ogni caso queste rotazioni vanno chiaramente oltre la vita umana e le osservazioni dirette che possiamo fare. Per cui queste valutazioni sono fatte attraverso simulazioni basate su osservazioni delicate e complesse.

Un altro metodo usato consiste nel confrontare il tasso di formazione stellare di una galassie con l'età dell'universo.
Se il tasso di formazione riscontrato esaurisse tutto il gas disponibile in meno di 13,7 miliardi di anni, allora è possibile che una data galassia possa trovarsi in uno stato di starburst.

Come appaiono le galassie starburst? e quali sono le migliori candidate?
Essendo l'origine di questo fenomeno piuttosto vario, ne consegue che anche le galassie coinvolte possono essere di natura diverse.
Gli Starburst possono verificarsi quindi sia nelle galassie a spirale che nelle galassie irregolari o ellittiche.
I parametri per la ricerca di candidate galassie starburst non sono quindi basate sulla loro forma, ma su ciò che contengono.

Esistono oggi tre caratteristiche in base alla quale vengono classificate le potenziali galassie starburst: Galassie Wolf-Rayet, Galassie blu, e Galassie infrarosse.

Galassie Wolf-Rayet: Sono galassie che ospitano un alto numero di stelle Wolf-Rayet.
Questo tipo di stelle sono incredibilmente massicce e luminose, ma sono contraddistinte dal fatto che perdono costantemente moltissima massa.
Nella nostra galassia esiste una zona dove sono concentrate un alto numero di queste stelle. Si tratta dell'ammasso Westerlund 1

I venti stellari che producono queste stelle possono scontrarsi con le regioni di gas presenti nella galassie e accendere una rapida formazione stellare.

Galassie compatte blu: Sono galassie molto compatte, ma con massa molto bassa, la cui popolazione stellare è molto vecchia. Di conseguenza anche la loro età e è molto antica. Da qui la tendenza al colore blu.
Ma all'improvviso però iniziano a formare stelle.
E' molto probabile che in realtà queste galassie siano il risultato di fusioni tra galassie con età differenti.
Scontrandosi accumulano il gas residuo presente in entrambe le galassie e le onde d'urto provocate dallo scontro accendono gli starburst.

Galassie luminose negli infrarossi: Sono galassie oscure, difficili da studiare perché contengono alti livelli di polvere che oscurano l'osservazione e impediscono di vedere la luce delle loro stelle.
Ma nella banda degli infrarossi sono estremamente luminose, perché questa frequenza riesce a penetrare le polveri.
Il fatto che siano molto luminose indica che in realtà sono piene di stelle in formazione.
Questi sono indizi che fanno pensare che all'interno ci siano in realtà embrioni di stelle che si stanno formando e che in futuro accenderanno queste galassie come alberi di Natale al tramonto!

Nelle immagini che vi mostriamo vedete alcuni esempi di galassie starburst, una delle quali è la famosa galassia M82 nell'orsa maggiore.
Come potete vedere dalle immagini le zone di starburst sono particolarmente visibili e luminescenti!

lunedì 25 febbraio 2019

#Nebulose #Stelle #ViaLattea
Molte nebulose planetarie bipolari della Via Lattea sono orientate nella stessa direzione. Questa straordinaria assomiglianza sembra non essere una coincidenza e apre la strada a nuove scoperte sulla nostra Galassia.
Facciamo prima un passo indietro,
Su cosa siano le nebulose planetarie e come si siano formate, abbiamo già parlato approfonditamente qui:

Le nebulose planetarie bipolari. sono però delle nebulose planetarie molto particolari.
Si perché i membri di questa famiglia di nebulose planetarie appaioni ai telescopi come bellissime farfalle colorate, con due bolle che si allontanando dalla stella centrale come se fossero due ali aperte.
Le nebulose planetarie bipolari sono quasi sicuramente originate da sistemi binari, cioè da una stella che ha una o più stelle che le orbitano attorno.

In un ambiente stellare di questo tipo, il materiale espulso dalla stella madre viene dirottato e "appiattito" lungo il piano di rotazione del sistema binario. Sul piano cioè "sopra alla quale si muove" la stella compagna.
Questo avviene ovviamente grazie all'effetto gravitazionale che ha la compagna sul sistema.
A mano a mano che il materiale stellare si allontana, subisce quindi anche una torsione e si affievolisce sempre di più.
Di contro, il materiale che viene invece attratto dalla stella compagna, si incanala nel suo capo magnetico e viene espulso ad alta velocità lungo le linee dei poli magnetici, dando origine alle "ali della farfalla"
Sicuramente il video qui sotto spiega meglio di tante parole il fenomeno.
Siamo abbastanza certi del contributo fondamentale giocato dai sistemi stellari binari nella formazione delle nebulose planetarie bipolari perché in molte di queste sono state osservate stelle compagne molto vicine alla stella che ha dato origine alla nebulosa stessa.

Ora, la cosa davvero interessante e stravagante è che le nebulose planetarie bipolari nei pressi del bulbo della nostra Via Lattea, sono tutte allineate nella stessa direzione.
Proprio così, moltissime di queste farfalle sembrano avere le loro lunghe "ali" allineate lungo il piano della Via Lattea. Questo indicherebbe che i poli magnetici dei sistemi sarebbero allineati (o quasi) al piano galattico, e che il l'intero sistema ruota in maniera perpendicolare al piano stesso.
In poche parole questi sistemi stellari sembrano essere sdraiati sul piano galattico della Via Lattea!
Questo è un fatto sorprendente se pensiamo che ogni stella ha la sua storia, la sue variazioni di composizione, ed il suo vicinato.

Questo allineamento indica sicuramente qualcosa di bizzarro nei sistemi stellari all'interno del bulbo galattico.
Affinché si allineino nel modo in cui vediamo, i sistemi stellari che formano queste nebulose dovrebbero ruotare perpendicolarmente alle nubi interstellari da cui si sono formate.

Mentre sappiamo come le proprietà delle stelle madri siano fondamentali per i colori e le forme di queste nebulose, siamo ancora lontani dal dare una motivazione a questa nuova scoperta.
Oltre alle complesse caratteristiche stellari che portano alla formazione delle nebulose planetarie, ci sono probabilmente anche fattori collegabili alla Via Lattea nel suo complesso.
Per esempio l'intero bulbo, o rigonfiamento centrale, ruota intorno al centro galattico.
Questo rigonfiamento potrebbe avere un grande influenza sui campi magnetici della Via Lattea e di conseguenza su tutti i corpi che in essa dimorano.

Gli astronomi suggeriscono che il comportamento ordinato delle nebulose planetarie bipolari potrebbe essere stato causato dalla presenza di campi magnetici ancora più forti nell'epoca in cui il rigonfiamento si è formato.
In pratica il forte campo magnetico del bulbo potrebbe aver ruotato e "sdraiato" le stelle che si trovano in quella zona.
Si sa ancora molto poco sull'origine e le caratteristiche si campi magnetici galattici, quindi non è chiaro come si siano evoluti nel tempo. Ma lo studio delle nebulose bipolari potrebbe chiarirci molti aspetti sulla loro presenza.

Un altro fatto degno di nota è che solamente le nebulose bipolari nei pressi del bulbo hanno lo stesso orientamento.
Quelle invece più lontane, ad esempio nel nostro circondario galattico, non si allineano nello stesso modo ordinato.
Questo potrebbe indicare che i campi magnetici della Via Lattea primordiale siano stati molto più forti di quanto non lo siano stati nel nostro vicinato.

Gli astronomi avevano già un vago presentimento di questa differenza, non a caso ritengono che la nostra zona galattica sia la più adatta anche per lo sviluppo e il perdurare della vita.
Probabilmente, se la Terra avesse orbitato attorno ad una stella presente nel bulbo della Via Lattea, oggi la vita non ci sarebbe, o sarebbe molto diversa da come la vediamo.
E se invece il Sole fosse stato ai margini della Via Lattea? Potete scoprirlo qui: Come sarebbe il Sistema Solare se fosse più vicino ai margini della Via Lattea
Non ci resta che esser contenti del luogo in cui il Sole e la Terra si sono sviluppati, perché a quanto pare in altre zone della Via Lattea il "clima interstellare" sembra essere più ostico di quello nel nostro quartiere galattio.

Non ne siete ancora convinti? Provate a dare un occhiata a questo articolo: centinaia di buchi neri nel cuore della Via Lattea


domenica 18 novembre 2018

#bestOf2018 #Stelle #StelleDiNeutroni #Supernovae #ViaLattea
Stelle estremamente massicce, esplosioni visibili a milioni di anni luce, e poi? carcasse cosmiche che sfidano le leggi della materia. Ecco cosa sono le stelle di neutroni e come diventano pulsar.

Le stelle di neutroni sono in realtà stelle morte. Carcasse che sfidano le leggi della materia.
Si formano quando una stella massiccia collassa per poi esplodere in un supernova. Durante il collasso che avviene subito prima dell'esplosione, la pressione alla quale è sottoposta la materia è così immensa che i protoni e gli elettroni si schiacciano e si fondono, trasformandosi in neutroni.
Ovviamente l'energia rilasciata da questo fenomeno è altissima, ed è per questo che le supernove sono fenomeni potentissimi e luminosissimi.
Loading...
Per fare un passo in dietro e capire passo passo come esplode una supernova, vi invitiamo a leggere: Come nascono le supernove e perché sono così importanti per l'uomo
Le stelle di neutroni risultanti da questo collasso sono gli oggetti più densi conosciuti, dopo i buchi neri ovviamente.
Sono stelle con la massa di un Sole, ma compressa fino alle dimensioni di una città.
Qui iniziano le frasi fatte che sicuramente avrete già letto in giro su internet: hanno un diametro di circa 20 chilometri, un cucchiaio del loro materiale peserebbe tanto quanto una montagna e la gravità sulla superficie è circa 2 miliardi di volte più forte della gravità sulla Terra. E anche il campo magnetico non scherza, è milioni di volte più forte di quello del Sole.

Detto questo, come è fatta veramente una stella di neutroni?
Se potessimo affettare una stella di neutroni ci accorgeremmo che non é per niente omogenea, o per lo meno questa è la teoria.
Le stelle di neutroni sono fatte da una crosta e da un nucleo.
La crosta è composta da da uno strato esterno di poche centinaia di metri, composta da un miscuglio molto compatto di nuclei atomici (protoni e neutroni) ed elettroni liberi, cioè elettroni che si muovono indipendentemente e non sono legati al nucleo di un atomo.
La densità qui è talmente alta che non si può più parlare di atomi. In un centimetro cubo di questo strato di crosta si trova una tonnellata di materia.

Sotto a questo strato troviamo la crosta interna, spessa circa un paio di chilometri e più densa dello strato sopra.
Nella crosta interna oltre agli elettroni liberi iniziamo a trovare anche neutroni liberi.

Scendendo ancora più verso l'interno troviamo il nucleo.
Questa zona è il cuore della stella di neutroni ed ha un diametro di circa 10 / 13 km.
La parte esterna del nucleo di una stella di neutroni è molto probabilmente liquido. Qui la pressione alla quale è sottoposta la materia è davvero altissima ed è proprio qua che i neutroni prendono la scena: più del 90% del nucleo esterno è composto da neutroni.
Gli atomi come li conosciamo non riescono più a resistere. Nemmeno i loro nuclei mantengono più le caratteristiche atomiche alla quale siamo abituati.
In questa sfera liquida di circa 10 km di diametro esistono quasi solamente neutroni!

Ma non è finita qua.
Superati i primi 10 km di profondità all'interno del nucleo, e cioè negli ultimi 2 / 3 km, la pressione e la forza di gravità sono talmente alte che gli astrofisici fanno davvero fatica a capire in che stato possa essere la materia.
Questo punto delimita l'inizio del nucleo interno della stella di neutroni.
Qui le particelle elementari si comportano in modo imprevedibile. Il nucleo interno delle stelle di neutroni è il punto più denso dell'universo osservabile. La densità raggiunge probabilmente valori di circa un miliardo di tonnellate per centimetro cubo!
La maggior parte dei fisici concorda sul fatto che nel cuore delle stelle di neutroni ci sia il plasma di quark e gluoni.
Questo brodo di particelle subatomiche può esistere solo a temperature o densità altissime.
Nei primi millisecondi dopo il Big Bang l'universo era talmente caldo da essere permeato di questo plasma. Situazione che è andata via via raffreddandosi creando i primi atomi.
Nel nucleo più interno delle stelle di neutroni potrebbe esserci abbastanza pressione da creare lo stesso plasma!

Cosa centra tutto ciò con le pulsar?
Le pulsar altro non sono che stelle di neutroni con un piano rotatorio molto particolare.
Tutte le stelle di neutroni sono in realtà anche delle pulsar. Ma ciò che le fa diventare pulsar ai nostri occhi è l'inclinazione del loro asse rispetto al nostro punto di osservazione.

Ma ci manca un aspetto essenziale.
Abbiamo detto prima che una stella di neutroni deriva da una stella molto grande, il cui diametro è di qualche milione di chilometri.
Dopo l'esplosione ed il collasso, la stella di neutroni risultante mantiene il momento angolare della sua progenitrice. Peccato però che il suo diametro sia passato da qualche milione di chilometri a poco più di 10.
Questo ha un'effetto potentissimo sulla sua velocità di rotazione che può raggiungere i 700 giri al secondo o più.

Per comprendere meglio questo fenomeno vi invitiamo a guardare questo simpatico video su youtube: il momento angolare

E' semplice intuire quanta energia possa avere un oggetto che ruota così velocemente.
Una parte di questa enorme energia viene rilascia attraverso il forte campo magnetico che avvolge la stella. E il risultato è un fascio costante e potente di energia che viene espulso dai poli del campo magnetico della stella di neutroni.
Benissimo, proprio questo fascio rende le stelle di neutroni anche delle pulsar.
In base all'inclinazione che ha l'asse di rotazione della stella di neutroni ed alla sua velocità, il fascio avrà per noi sulla Terra una intermittenza diversa.
Il video sotto aiuta a comprendere il fenomeno.



Considerata la velocità con la quale ruotano le stelle di neutroni, potete farvi un'idea di quanto velocemente possa "lampeggiare" una pulsar.
Ci sono pulsar che emettono impulsi 1 volta al secondo. Altre, 30 volte al secondo e così via fino ad arrivare a pulsar che emettono impulsi a centinaia di volte al secondo.

Qui sotto vi facciamo ascoltare alcune straordinarie registrazioni fatte dai radiotelescopi.

Ma questa rotazione è destinata piano piano a rallentare. E' un serpente che si morde la coda, più la stella ruota velocemente e più energia disperde. Più energia disperde e prima terminerà la sua rotazione. Si parla comunque di decine milioni di anni.
Un'altra causa che determina il rallentamento di una pulsar è legata al suo raffreddamento.
Mentre una stella di neutroni si raffredda, il suo interno inizia a diventare sempre più "superfluido".
Il superfluido è uno stato della materia che si comporta come un fluido, ma senza l'attrito o la "viscosità" del fluido.
Anche questo cambiamento di stato influenza gradualmente il modo in cui la rotazione della stella rallenta.

Le pulsar sono oggetti straordinari, fari cosmici con ritmi secolari. Oggi ne conosciamo più di 2.000 ed il numero cresce sempre di più. Sono un esempio di quanto l'universo possa stupirci con le sue straordinarie stranezze.
Pulsar PSR B0329+54. Questa è una pulsar classica che pulsa con un periodo di 0,7 secondi ascolta
Pulsar PSR B0833-45. Questa pulsar si trova al centro della nebuloso Vela. Costituita dai detriti dell'esplosione di circa 10.000 anni fa. Questa pulsar ha un periodo di 89 millisecondi e ruota 11 volte al secondo.ascolta
Pulsar PSR B0531 + 21. E' sicuramente la pulsar più famosa perché si trova al centro della nebulosa del granchio: M1. Ruota circa 30 volte al secondo.ascolta
Pulsar PSR J0437-4715. Questa è una pulsar millisecondo che ruota circa 174 volte al secondo.ascolta
Pulsar PSR B1937 + 21. E' la pulsar più veloce conosciuta. Ruota con un periodo di 0,00155780644887275 secondi, cioè o circa 642 volte al secondo. La superficie di questa stella si muove a circa 1/7 della velocità della luce e illustra le enormi forze gravitazionali che impediscono il suo allontanarsi a causa delle immense forze centrifughe.ascolta

domenica 4 novembre 2018

#bestOf2018 #Galassie #Stelle #ViaLattea

La seconda vita della Via Lattea


Oggi, dopo 13,5 miliardi di anni dalla sua nascita, la Via Lattea sta vivendo la sua seconda giovinezza. Dopo un periodo in cui il tasso di formazione stellare è stata molto limitato, la Via Lattea ha iniziato una seconda vita, riprendendo la formare di stelle.

La Via Lattea è la nostra galassia. In questo sito abbiamo parlati di come la vediamo, di come è fatta, di quanto "pesa" e di molti altri suoi aspetti.
Scopri qui tutti questi approfondimenti: La Via Lattea
Oggi aggiungiamo un altro tassello a questo disegno che riprende la nostra galassia in tutto il suo splendore: la sua seconda vita.
Secondo le ultime ricerche infatti, oggi stiamo vivendo in una seconda vita per la Via Lattea.

Ma iniziamo dall'inizio.
Loading...
La Via Lattea è una galassia molto vecchia: con i suoi 13,51 miliardi di anni si è formata assieme alle prime galassie dell'universo.
Ha quindi avuto tutto il tempo per evolversi e diventare come gli astrofisici ce la descrivono oggi: una galassia a spirale barrata.
Quello che vediamo oggi, e che vediamo in moltissime altre galassie simili, è il risultato della formazione di miliardi di stelle, nate dall'enorme bolla di gas che costituiva l'embrione primordiale della Via Lattea.
Le innumerevoli stelle che vediamo nel cielo, la striscia bianca che solca i cieli estivi, le splendide nebulose che vediamo nelle foto di Hubble, gli ammassi globulari e quelli aperti: proviene tutto da una delle tante sacche di gas nate dal Big Bang e dell'inflazione.

Le onde d'urto generate dalle prime esplosioni di supernove, che all'inizio della vita della Via Lattea erano numerose, hanno sicuramente aiutato l'intensa formazione stellare dei primi anni (miliardi) della nostra galassia.
Un altro fattore che ha aiutato la formazione delle stelle che vediamo oggi è sicuramente stato lo scontro con piccole galassie satelliti primordiali. Queste piccole galassie hanno creato delle "maree" nei gas della Via Lattea, comprimendoli e innescando le scintille per la formazione di altre stelle.
Tutto questo ha costituito un'era molto frizzante per la nostra galassia.

Oggi gli astrofisici sono abbastanza sicuri che dopo questa era di estrema attività, ci sia stato un periodo dormiente durato due miliardi di anni in cui il tasso di formazione stellare è diminuito notevolmente.

Ora però la tendenza sembra essersi di nuovo invertita e il tasso di formazione stellare è di nuovo in aumento. Praticamente nella Via Lattea stanno ancora nascendo centinaia di milioni di stelle, impedendo alla nostra galassia di diventare sempre più buia e di trasformarsi in un bacino di stelle vecchie e morenti.

Ma cosa si nasconde dietro a questa variazione del tasso di formazione stellare?
La risposta si annida in un fenomeno galattico chiamato "accrescimento da flusso freddo" e nel concetto si "sviluppo galattico a due stadi".

In breve lo scenario è questo.
Tra le galassie troviamo i così detti filamenti galattici: enormi nubi di gas ad alta temperatura, residui ancora immacolati della materia formatasi dopo il big bang e l'inflazione. I margini di questi enormi filamenti sono più freddi rispetto alle altre zone e riescono a penetrare nelle galassie.
Trovi un approfondimento molto interessante sui filamenti galattici a questo link.
Questo flusso freddo non costituisce solo carburante per nuove stelle, ma con l'attrito e la pressione che genera sui gas che già si trovano nella galassia, danno il via all'addensamento necessario ad accendere la formazione stellare.

A questo punto entra in gioco lo sviluppo a due stadi.
Le stelle che popolano le galassie molto giovani sono stelle molto grosse, molto luminose e molto energetiche.
Queste tipo di stelle purtroppo hanno una vita molto breve ed una more violenta: diventano supernovae.
Quando all'interno di una galassia molto giovane le stelle iniziano ad esplodere in supernove, lo shock e le onde d'urto scaldano i gas galattici circostanti bloccando il flusso freddo in entrata.

Ecco che a questo punto la formazione stellare diminuisce drasticamente e la galassia entra in uno stato "dormiente".
In alcuni casi questo periodo segna l'inizio della morte della galassia, i cui gas non riescono più ad accendere stelle e quindi si spengono pian piano diventando galassie oscure.
Ma nella maggior parte dei casi, come è successo alla Via Lattea, questa fase termina quando diminuiscono le esplosioni di supernovae.
A questo punto il gas freddo presente nei bordi dei filamenti ricomincia a fluire dentro la galassia dando il via a nuove formazioni stellari dalle ceneri delle supernovae esplose. Ecco che ha inizio un secondo stadio evolutivo.

E, come diciamo dall'inizio di questo articolo, anche la Via Lattea sta vivendo questa seconda vita.
La storia della Via Lattea può essere analizzata osservando le composizioni elementali delle sue stelle, che sono il risultato della composizione del gas da cui sono formate.
Osservando le stelle della Via Lattea, ci si accorge che possono essere divise in due gruppi con composizioni chimiche diverse.
Un gruppo è costituito da stelle ricche di elementi come ossigeno, magnesio e silicio, detti anche elementi alfa.
Mentre nell'altro gruppo c'è una grande abbondanza di ferro.

Ecco quindi dimostrato che la Via Lattea è nata quando i flussi di gas freddo si sono intensificati verso quello che era la nostra proto galassia, portando alla formazione della prima generazione di stelle.
Questo gas conteneva elementi alfa, prodotti anche da supernova di tipo II: Stelle molto massicce, nate ai primordi dell'universo, che al termine della loro breve ma intensa vita subiscono un collasso del nucleo per poi esplodere rilasciando questi elementi nel mezzo intergalattico.
Questo ha portato alla prima generazione di stelle ricche di elementi alfa.

Poi, circa 7 miliardi di anni fa, la formazione stellare ha subito uno stop, fino a circa 5 miliardi di anni fa, quando hanno iniziato ad apparire un alto numero di supernove di tipo 1A, causate da sistemi binari in cui una nana bianca attira a se il materiale dal suo compagno.
Queste esplosioni hanno iniettato il ferro nel gas intergalattico e ne hanno modificato la composizione elementare.
Nel corso del tempo, questo gas intergalattico ha iniziato a raffreddarsi e ha iniziato a rifluire all'interno della galassia portando alla formazione di una seconda generazione di stelle.
Il Sole stesso, è ricco di ferro ed appartiene a questa generazione di stelle.
Puoi approfondire in dettaglio cosa porta all'esplosione di supernove in questo nostro approfondimento: Cosa sono le supernove e perché sono così importanti per l'uomo



martedì 31 luglio 2018

#Nebulose #Stelle #Supernovae #ViaLattea

Distante 24.000 anni luce dalla terra, Cygnus X-3 è una delle più potenti sorgenti binarie di raggi-x del cielo.

Inizialmente gli astrofisici classificarono questo oggetto etichettandolo come micro-quasar.
Oggi invece sappiamo che si tratta di un sistema binario molto strano, ma non altrettanto raro.
Stiamo parlando di una stella molto grande, probabilmente una stella di Wolf-Rayet intorno alla quale ne sta orbitando una molto piccola ma estremamente massiccia: quasi sicuramente una stella di neutroni o, forse, un buco nero.
Pensate, questa stella di neutroni orbita attorno alla stella gigante in un periodo di appena 5 ore, detenendo così il primato di coppia binaria più veloce!
La potenza di questa coppia risiede come sappiamo nel fatto che la stella di neutroni, con la sua massa estrema sta pian piano divorando la superficie della compagna gigante.

Questo fenomeno genera una fortissima emissione di raggi-x e, nel lungo periodo, darà sicuramente luogo ad una fortissima esplosione di supernova: una supernova di tipo 1A.
Se pensiamo che anche la stella di neutroni della coppia si è formata molto probabilmente da una esplosione di supernova, ci accorgiamo che ci troveremo davanti ad un doppio evento di supernova.
Potete approfondire qui come si formano le supernovae: Come nascono le supernovae

Ma non è tutto, Cygnus X-3 è molto interessante anche come sorgente di raggi gamma, infrarossi e di onde radio.
E' una delle poche fonti di raggi cosmici ad altissima energia della nostra galassia. Più di una volta ha dato vita ad anomale ed insolite emissioni di raggi gamma che anno messo in discussione la sua origine, accendendo teorie secondo la quale la stella orbitante potrebbe non essere una stella di neutroni ma addirittura una esotica stella di quark!

Ma questo Mostro stellare non si è distinto solamente per le sue intense emissioni di raggi cosmici e raggi-x. Nel 1972 ad esempio, Cygnus X-3 ha dato spettacolo anche come emittente radio con una esplosione che ha aumentato l'emissione radioelettrica di mille volte rispetto alla sua media.
Ancora oggi non sappiamo dare una risposta a questa violentissima raffica di emissioni radio, ma da quella prima volta Cygnus X-3 ha iniziato ad avere esplosioni radio minori con una cadenza precisa di 367 giorni! Sappiamo che la velocità dell'onda d'urto di queste esplosioni è pari ad un terzo della velocità della luce!

Come avrete capito, stiamo parlando di un vero e proprio mostro celeste, un oggetto che emette radiazioni fortissime e con elevata velocità. E nei cui pressi la distorsione spazio-temporale è davvero forte.

Eppure, nei dintorni di questo oggetto a poche migliai di anni luce di distanza, sta nascendo un nuovo sistema Stellare.
E' stata infatti osservata una emissioni di raggi-x aggiuntiva, molto vicina a Cygnus X-3. Talmente vicina da essere stata confusa con una emissioni minore proveniente da Cygnus X-3.

Si tratta di una piccola nube oscura dal diametro di poco inferiore ad un anno lune. Questa nube si comporta come un piccolo specchio che riflette verso la terra alcuni raggi-x provenienti dalla vicina Cygnus X-3. Da qui il simpatico nome: "Il piccolo amico di Cygnus X-3"

Le osservazioni indicano che la massa di questa nube varia, in maniera molto imprecisa, tra 2 e 24 volte quella del Sole. All'interno, le osservazioni spettroscopiche hanno rilevato la presenza di monossido di carbonio.
Tutti questi indizi fanno pensare che si tratti di un globulo di bok. Questo significa che stiamo assistendo alla nascita di una stella e un conseguente sistema planetario a pochi anni luce da un mortale generatore di radiazioni cosmiche quale è Cygnus X-3!
A confermare la genesi di un sistema proto-planetario c'è anche la presenza di un getto energetico dall'interno del Piccolo Amico, una chiara indicazione che nei meandri del globulo di bok, una stella abbia già iniziato a formarsi.
Potete scoprire tutto quello che c'è da sapere sui globulo di bock qui: Cosa sono i globuli di bok?

Il piccolo amico di Cygnus X-3 offre un punto di vista completamente nuovo per lo studio di questi embrioni proto-planetari.
Solitamente studiamo i globuli di bok analizzando la luce che assorbono, oppure le deboli emissioni radio che producono. In questo caso invece possiamo studiare il bozzolo planetario sfruttando la riflessione dei raggi-x. Se ci aggiungiamo il fatto che con i suoi 20.000 anni luce di distanza è il globulo di bok più lontano osservato, be la cosa diventa davvero interessante!

Ma come facciamo a sapere la distanza di questo globulo di bok?
E' molto semplice, come abbiamo detto all'inizio, Cygnus X-3 dista dalla terra 24.000 anni luce, ed emette un fascio di raggi-x con una periodicità regolare di 5 ore. Quindi anche i raggi-x riflessi dal piccolo amico verso di noi hanno una regolarità di 5 ore, ma sono leggermente ritardati a causa della sua differente posizione.
E' proprio questo ritardo ad averci aiutato a calcolare con precisione la sua distanza.

La scoperta e la posizione del piccolo amico da delle conferme ad una teoria secondo la quale il sistema binario Cygnus X-3 non sia nato li dove lo vediamo adesso.
La teoria pone le sue radici nel fatto che una delle due componenti del sistema binario è una stella di Wolf-Rayet: una stella molto massiccia la cui vita è molto breve. Quindi essendo ancora nel pieno della sua esistenza la sua nascita non è molto lontana nel passato.
Ma questo tipo di stelle, di fatto molto giovani, si trovano nelle braccia a spirare delle galassie e della Via Lattea. Dove è presente ancora molto gas primordiale, in attesa della scintilla che dia origine alla nascita di stelle. Ma Cygnus X-3 si trova fuori dai bracci.

La spiegazione teorica che giustificherebbe questa presenza fuori luogo è che l'esplosione di supernova che ha dato origine alla stella di neutroni (o al buco nero) che ruota attorno alla stella di Wolf-Rayet sia avvenuta in realtà nel braccio vicino della Via Lattea, dove ad una distanza di 4.000 anni luce si trova anche "il piccolo amico", e sia stata talmente violenta da allontanare il sistema binario dal luogo iniziale, quella in cui si trova ancora oggi il globulo di bok. Ciò non significa che la stella di Wokf-Rayet sia nata dal "piccolo amico", ma che entrambe potrebbero essere nati da una stessa antica nube molecolare gigante di cui il globulo di bok ne è un rimasuglio.

Supponendo che Cygnus X-3 e il Piccolo Amico si siano formati, seppure indipendentemente, uno vicino all'altro, Cygnus X-3 dovrebbe essere stato gettato via ad una velocità comprese tra i 180 e 900 chilometri al secondo!

La prossima volta che guarderete la costellazione estiva del Cigno, pensate che vicino alla stella che unisce le ali al corpo, quella sotto Deneb, la stella che rappresenta la coda del Cigno, li vicino si trova questa stella di Wolf-Rayet intorno alla quale ruota o una stella di neutrini (o un buco nero) emettendo una altissima quantità di raggi-x, e il piccolo amico.
Costellazione:Cigno
Ascensione retta:20h 32m
Declinazione:+40° 57′
Distanza di Cygnus X-324.000 anni luce
Distanza del piccolo amico:20.000 anni luce