Vieni a scegliere la tua maglietta!

giovedì 12 settembre 2019

#BuchiNeri #Galassie #Quasar #starburst #Universo

Cosa sono i venti galattici?

Fenomeni energetici che possono sconvolgere la formazione stellare della galassia ospite, i più forti possono uscire dalle galassie per centinaia di anni luce. Ma cosa sono questi venti galattici? e come si formano?

I venti galattici sono flussi di particelle elettricamente cariche che si muovono ad alta velocità all'interno delle galassie.
Sono fenomeni del tutto simili al vento solare, che viaggia attraverso il Sistema Solare e si propaga dal Sole.

Ma mentre il vento solare viene emesso dal Sole,
che cosa genera il vento galattico?

Quelli più deboli, nascono da stelle molto massicce.
Non solo le stelle di Wolf Rayet ma anche stelle super giganti e iper giganti possono generare venti galattici.
Sono stelle di primissima generazione, e sono estremamente attive: cioè hanno una fusione nucleare molto più attiva di stelle meno dense. Proprio a causa della loro iper attività hanno anche una vita molto breve perché l'idrogeno finisce molto in fretta portando la stella agli stadi successivi.
Ma nella loro breve vita, producono venti stellari talmente forti da inondare lo spazio circostante molto più di quanto faccia il Sole e molto più intensamente. Ecco perché spesso questi venti stellari diventano venti galattici.
Nella nostra galassia troviamo una alta concentrazione di queste stelle nell'ammasso stellare Westerlund 1.
Trovi un approfondimento su questo splendido oggetto a questo link: Westerlund 1, Le stelle più massicce della galassia sono qui!

I venti galattici generati da queste stelle super massicce sono a tutti gli effetti una parte della corona stellare che si allontana dalla stella in questione. Su queste stella la gravità non è sufficiente a vincere la pressione generata dalla fusione nucleare, e molto materiale scappa via. Quindi sono flussi composti da idrogeno ionizzato (elettroni e protoni), elio (particelle alfa) e tracce di ioni pesanti e nuclei atomici.
Per avere un'idea di cosa stiamo parlando, una stella di wolf rayet può arrivare ad espellere ogni anno attraverso il proprio vento stellare una massa pari a 1 centomillesimo della massa del Sole (1 alla -5). E' tanto? E' poco? beh è' circa un miliardo di volte la massa che disperde in un anno il vento solare! sono circa 3,33 masse terrestri!
Tuttavia questi venti galattici non sono abbastanza energetici per fuoriuscire dalla galassia ospite, ma hanno un impatto altissimo sulla formazione di nuove stelle.
Questo avviene perché le particelle del vento galattico, che si muovono in flussi molto densi, urtano quelle presenti nelle nebulose interstellari, ricche di idrogeno e altri gas, aiutando le prime collisioni atomiche necessari per accendere la miccia della formazione stellare.

Ci sono poi i venti galattici formati dalle esplosioni di supernova.
Per scoprire tutti i segreti sulle supernove ti invitiamo a leggere questo articolo: Come nascono le supernove?

Questi venti sono molto più forti di quelli generati dalle stelle massicce come quelle di Wolf Rayet, e molto spesso proiettano materiale fino nell'alone della galassia ospite.
Sono venti molto esplosivi: si formano in pochi secondi, negli istanti successivi all'esplosione, e da quel momento iniziano il loro lungo cammino attraverso la galassia fino a raggiungerne le zone più esterne dell'alone.
E se vi sembra tanto il materiale trasportato ogni anno dai venti galattici provenienti da stelle massicce, pensate che quelli generati da supernove possono arrivare ad espellere la stessa quantità di materia soltanto in pochi secondi!

Questi flussi possono raggiungere velocità di 1.000 km/s, e se incontrano grosse nebuloso nel loro cammino sono in grado di innescare contemporaneamente decine di fenomeni di formazione stellare!
Le galassie che ospitano questi fenomeni vengono spesso etichettate come galassie starbust, ovvero galassie dalla formazione stellare accelerata!
abbiamo parlato molto di queste galassie esplosive a questo link: galassie starbust

E ora veniamo ai venti galattici più energetici, veloci, e densi: quelli generati dai nuclei galattici attivi e dai Quasar.
Scopri cosa sono realmente i quasar qui: Cosa sono i Quasar?

Questi venti sono dei veri e propri "uragani galattici": possono anche raggiungere la velocità di 3.000 km/s, una velocità spaventosa!
Se leggendo questo nostro approfondimento: Quanto veloci siamo da fermi? vi siete stupiti della velocità con la quale la Terra si muove nel cosmo, vi renderete sicuramente conto di quanto siano veloci questi venti galattici.
A questa velocità le particelle che costituiscono il vento riescono anche ad uscire dalla galassia ospite e si disperdono nello spazio intergalattico.

Potrebbe sembrare un fenomeno tragico per le galassie, perché perdono materiale che potrebbero riutilizzare per dar vita a nuove stelle.
Invece, donano una seconda opportunità alla galassia ospite quando questa avrà esaurito le sacche e le nebulose di gas primordiale che contiene.
Già, perché quando il materiale che fuoriesce dalla galassia si raffredda, dopo migliaia di anni tende a rientrare. Innescando un secondo ciclo di formazione stellare, sia per via dell'attrito, che per il materiale rientrante che funge da carburante.

Un esempio di formazione stellare molto attiva generato da un buco nero supermassiccio lo troviamo anche nella galassia a spirale M77 (NGC 1068).
Qui il buco nero al centro della galassia ha una massa di circa 5 milioni di soli, e ha creato un disco di accrescimento di circa 300 anni luce. Questo enorme buco nero soffia un vento galattico alla velocità di 3.000 km/sec, che prima di uscire dalla galassia sta innescando la formazione stellare di migliaia di nuove stelle.



giovedì 14 marzo 2019

#BuchiNeri #Galassie #starburst #Stelle #Supernovae #Universo

galassie starburst


Che cos'è, e che cosa scatena il fenomeno dello starburst galattico? e come facciamo a sapere che è in corso?

Le galassie sono piene zeppe di stelle. In questa epoca dell'Universo, molte sono quelle che muoiono e si spengono in modo più o meno cruento e spettacolare. Poche invece nascono e si accendono come flebili lucine viste appena in lontananza.
Ma in alcune galassie queste lucine si accendono ancora a ritmi veritiginosi (astronomicamente parlando) e l'effetto che abbiamo dalla Terra è simile a quello che avremmo guardando i fuochi d'artificio in un paese lontano all'orizzonte.

Proprio così, le galassie starburst sono galassie in cui, in questo momento, il tasso di formazione stellare è molto più alto della media. Ovviamente questo fenomeno non è perenne, non è sempre stato così frequente, e non lo sarà per sempre.

Anzi, queste esplosioni durano per un breve periodo rispetto alla lunga vita della galassia, perché la formazione stellare brucia molto rapidamente e voracemente il gas che trova nelle zone della galassie interessata.
Terminato il combustibile, o la spinta che ha innescato il fenomeno, lo starburst si affievolisce e tutto torna alla normalità.

Ciò che accomuna le galassie starburst è che il tasso di formazione stellare è incoerente con l'età della galassia.
Finché parliamo di formazione stellare in galassie molto lontane, e quindi molto giovani nell'universo, il fenomeno di starburst è piuttosto normale, poiché le giovani galassie appena formatesi all'inizio dell'universo ospitavano molto più gas di quanto non ne ospitino oggi. Quindi la formazione stellare era per forza molto frequente.

Ma ai nostri tempi, e quindi nelle galassie a noi più prossime, il gas primordiale si è consumato quasi tutto, tranne in alcune sacche in cui vediamo splendide nebulose.
Quindi un tasso di formazione stellare molto alto è del tutto anomalo paragonato all'età delle galassie odierne. La maggior parte delle galassie, oggi semplicemente non dovrebbe avere abbastanza gas per continuare l'azione dello starburst iniziale allungandolo per miliardi di anni.
Abbiamo parlato qui delle nebulose primordiali e di come sono fatte

Ma allora cosa innesca lo starburst nelle galassie odierne?
Alcune galassie, poche a dire il vero, possono avere velocità di formazione stellare superiori al normale semplicemente perché hanno volumi di gas e polvere ancora molto alti.
Ma questi sono casi rari e, come detto, la maggior parte delle galassie oggi non hanno le riserve di gas per giustificare uno starburst.
Quindi l'avvio di uno starburst oggi è innescato da alcuni eventi specifici.

Nella maggior parte dei casi questo evento è costituito dalla fusione di due galassie.
Durante la fusione tra due o più galassie, i gas delle protagoniste vengono mescolati insieme e aumentano di volume.
In più la collisione ed il mescolamento provocano onde d'urto che comprimono i gas e scatenano raffiche di formazioni stellari.
Ricordiamo poi che le fusioni tra galassie durano moltissimi anni, e le perturbazioni gravitazionali che iniziano ad affiorare durante le prime fasi possono generare abbastanza onde d'urto per innescare uno starburst anche in galassie apparentemente non in fase aperta di collisione.

Un'altra causa di innesco di starburst è costituita da frequenti esplosioni di supernovae e/o ipernovae.
Quando una supernova esplode genera onde d'urto nello spazio interstellare circostante per migliaia di anni luce. Se in una galassie esplodono molte supernovae in periodi relativamente brevi, ecco che le onde d'urto possono diventare abbastanza forti da accendere degli starburst se incontrano vaste zone nebulari.
Ovviamente affinché ciò avvenga è necessario che il gas primordiale ancora presente nella galassia sia abbastanza.
A questo link puoi capire cosa porta una stella ad esplodere in una potente supernovae: Cosa sono le supernove e perché sono così importanti per l'uomo?

Ma la causa più impensabile di starburst è rappresentata dai Nuclei Galattici Attivi. Sappiamo ormai per certo che la maggior parte delle galassie ospitano uno o più buchi neri supermassicci nel loro nucleo.
Se il buco nero non è attivo, la sua presenza assorbe energia e rallenta l'attività di formazione stellare della galassia. Ma se il buco nero in questione è attivo, allora può al contrario innescare una rapida formazione stellare. Il suo disco di accrescimento infatti, oltre a ingurgitare decine di masse solari, espelle a sua volta una grande quantità di materia attraverso i suoi poli magnetici, riciclando materia e creando enormi onde d'urto. E ancora una volta ecco gli elementi fondamentali per accendere la formazione stellare.
Per capire che differenza c'è tra i buchi neri attivi e quelli non attivi, e cosa sono i nuclei galattici attivi, potete leggere questo approfondimento sui Quasar

Infine c'è il così detto fenomeno dell' "accrescimento da flusso freddo", di cui sappiamo ancora poco ma che probabilmente sta coinvolgendo anche la nostra Via Lattea.
Ma su questo fenomeno abbiamo dedicato un intero approfondimento qui: Una seconda vita per la Via Lattea

Come si capisce se una galassia sta vivendo uno starburst?
Per capire se una galassia relativamente vicina stia attraversando uno starburst, si confronta il suo tasso di formazione stellare con il suo periodo di rotazione.
Se per esempio, la galassia esaurisce tutto il gas disponibile durante una rotazione, significa che il suo tasso di formazione stellare è molto alto e si può considerare una galassia starburst.
La Via Lattea compie una rotazione ogni 220 milioni di anni, alcune galassie ruotano molto più velocemente, altre più lentamente, ma in ogni caso queste rotazioni vanno chiaramente oltre la vita umana e le osservazioni dirette che possiamo fare. Per cui queste valutazioni sono fatte attraverso simulazioni basate su osservazioni delicate e complesse.

Un altro metodo usato consiste nel confrontare il tasso di formazione stellare di una galassie con l'età dell'universo.
Se il tasso di formazione riscontrato esaurisse tutto il gas disponibile in meno di 13,7 miliardi di anni, allora è possibile che una data galassia possa trovarsi in uno stato di starburst.

Come appaiono le galassie starburst? e quali sono le migliori candidate?
Essendo l'origine di questo fenomeno piuttosto vario, ne consegue che anche le galassie coinvolte possono essere di natura diverse.
Gli Starburst possono verificarsi quindi sia nelle galassie a spirale che nelle galassie irregolari o ellittiche.
I parametri per la ricerca di candidate galassie starburst non sono quindi basate sulla loro forma, ma su ciò che contengono.

Esistono oggi tre caratteristiche in base alla quale vengono classificate le potenziali galassie starburst: Galassie Wolf-Rayet, Galassie blu, e Galassie infrarosse.

Galassie Wolf-Rayet: Sono galassie che ospitano un alto numero di stelle Wolf-Rayet.
Questo tipo di stelle sono incredibilmente massicce e luminose, ma sono contraddistinte dal fatto che perdono costantemente moltissima massa.
Nella nostra galassia esiste una zona dove sono concentrate un alto numero di queste stelle. Si tratta dell'ammasso Westerlund 1

I venti stellari che producono queste stelle possono scontrarsi con le regioni di gas presenti nella galassie e accendere una rapida formazione stellare.

Galassie compatte blu: Sono galassie molto compatte, ma con massa molto bassa, la cui popolazione stellare è molto vecchia. Di conseguenza anche la loro età e è molto antica. Da qui la tendenza al colore blu.
Ma all'improvviso però iniziano a formare stelle.
E' molto probabile che in realtà queste galassie siano il risultato di fusioni tra galassie con età differenti.
Scontrandosi accumulano il gas residuo presente in entrambe le galassie e le onde d'urto provocate dallo scontro accendono gli starburst.

Galassie luminose negli infrarossi: Sono galassie oscure, difficili da studiare perché contengono alti livelli di polvere che oscurano l'osservazione e impediscono di vedere la luce delle loro stelle.
Ma nella banda degli infrarossi sono estremamente luminose, perché questa frequenza riesce a penetrare le polveri.
Il fatto che siano molto luminose indica che in realtà sono piene di stelle in formazione.
Questi sono indizi che fanno pensare che all'interno ci siano in realtà embrioni di stelle che si stanno formando e che in futuro accenderanno queste galassie come alberi di Natale al tramonto!

Nelle immagini che vi mostriamo vedete alcuni esempi di galassie starburst, una delle quali è la famosa galassia M82 nell'orsa maggiore.
Come potete vedere dalle immagini le zone di starburst sono particolarmente visibili e luminescenti!

venerdì 30 novembre 2018

#bestOf2018 #CieloProfondo #Galassie #Universo
Siamo abituati a vedere fotografie di splendide galassie a spirale presenti in tutto l'universo. Ma il meccanismo che porta alla formazione delle spirali non è per niente scontato. Ecco cosa accade in realtà!

Immaginiamo per un attimo di togliere tutte le stelle da una galassia.
Le sue spirali esisterebbero ugualmente, anche se noi non le vedremmo. Questo significa che le spirali non sono formate dalle stelle, ma le stelle semplicemente sono una conseguenza della presenza delle spirali.
L'esistenza delle spirali non è da attribuire alla presenza delle stelle, anzi è proprio il contrario: le stelle esistono grazie alla presenza delle spirali.
Ma partiamo dal principio, Come si formano le spirali delle galassie?.

In astrofisica le spirali galattiche vengono definite come onde di densità.
Queste onde di densità sono raggi del disco galattico che hanno una densità di massa del 10%/20% maggiore rispetto alle altre zone. Vanno immaginate come delle vere e proprie onde.

Quando il materiale interstellare, ruotando attorno alla galassia, si sposta nella regione ad alta densità, viene compresso.
Questa compressione è una delle scintille che innesca la formazione stellare.
Ecco perché le spirali sono piene di stelle, e le stelle più luminose si trovano all'interno, o molto vicino, alla spirale in cui si sono formate.
E sempre per questo motivo le spirali della galassie sono, in termini di formazione stellare, le zone più attive della galassia.
Dato che queste stelle sono molto luminose, e che all'interno delle onde di densità, la presenza del materiale interstellare (nebulose di gas e povere), è più comune che nelle zone limitrofe, le spirali acquisiscono il famigliare aspetto che vediamo.
In poche parole vediamo le spirali galattiche perché sono zone molto affollate di stelle nate dalla compressione dei gas presenti nelle onde di densità sottostanti.

Ma perché vediamo delle spirali e non semplicemente delle formazioni a raggera che si allontanano dal bulbo galattico?
La risposta risiede nella differenza di velocità di rotazione tra gli oggetti vicino al nucleo galattico e quelli lontani.
Per acquisire famigliarità con i termini nucleo, disco e spirali vi invitiamo a dare uno sguardo al nostro approfondimento morfologia della via lattea, che ben si presta a spiegare come è fatta una galassia a spirale

Nella parte interna del disco galattico (più vicina al nucleo), le stelle si muovono più velocemente e si muovono davanti all'onda di densità, venendo quasi spinte da questa.
Ad una certa distanza dal nucleo galattico c'è un confine chiamato "raggio di co-rotazione" in cui le stelle e l'onda di densità si muovono alla stessa velocità.
Mentre nella parte esterna del disco galattivo, oltre "il raggio di co-rotazione" le stelle ruotano più lentamente e si trovano dietro all'onda.
Questa differenza di velocità genera la figura della spirale.

La cosa importante da capire in tutto ciò è che le stelle non ruotano attorno alla galassia formando delle spirali. Ma si formano all'interno delle spirali, e poi piano piano si allontanano verso l'esterno.

Ma cosa da origine alle onde di densità?
Su questo gli astrofisici non hanno ancora per niente le idee chiare. Anche perché la teoria delle onde di densità è stata confermata e accettato dalla comunità scientifica da pochissimo tempo.
Tuttavia ci sono alcune ipotesi, tutte legate alle influenze gravitazionali.

Una causa potrebbe essere da ricercare nelle perturbazioni gravitazionali generate da galassie molto vicine o satelliti.
Ma questo tuttavia non spiegherebbe la presenza di galassie a spirale in luoghi isolati.

Un'altra causa potrebbero essere la forma e la distribuzione di massa del nucleo galattico.
Se il nucleo di una galassia ha una distribuzione di massa a forma di barra, ruotando potrebbe causare un sufficiente disturbo gravitazionale nel disco per produrre onde di densità.
Questo spiegherebbe la presenza di onde di densità e di spirali in galassie isolate.

Un'ultima ipotesi riguarda le perturbazioni gravitazionali derivanti dalle collisioni tra galassie. La perturbazione gravitazionale di una fusione tra galassie potrebbe essere sufficiente a produrre onde di densità.
La Via Lattea, che oggi sembra una galassia tranquilla, è stata in realtà teatro di scontri e fusioni nel passato, così come potrebbero esserlo state anche altre galassie a spirali. Inoltre, galassie che oggi ci appaiono isolate potrebbero in realtà aver subito fusioni nel passato senza lasciare tracce.

In ultima istanza, anche la presenza di buchi neri presenti nei nuclei galattici potrebbe dare origine a delle onde di densità.
Ricordiamo infatti che, per esempio, nella zona centrale della Via Lattea sono presenti centinaia di buchi neri!!
Non ne sapevate nulla? qui trovate un approfondimento che ne parla: centinaia di buchi neri nel cuore della Via Lattea

Benissimo, quando guarderete di nuovo fotografie di splendide galassie a spirale, non lasciatevi trarre in inganno dal fatto che le stelle formano le spirali, perché in realtà è proprio il contrario: le stelle nascono ed esistono grazie alle spirali!



venerdì 21 settembre 2018

#BuchiNeri #Galassie #Quasar #Universo

Cosa sono i Quasar?



Oggetti estremamente massicci, pesanti, luminosi e potenti.
Cosa sono i quasar? e cosa li fa diventare così luminosi?


Un tempo si pensava che i Quasar fossero anche gli oggetti più di distanti nell'universo, ma oggi sappiamo che la distanza (e quindi anche l'età) non è più una proprietà che distingue questi oggetti.
Sono stati scoperti grazie alle loro fortissime emissioni radio; da qui il nome di "oggetti quasi stellari ad emissione radio".
Oggi sappiamo che in realtà soltanto il 10% circa dei quasar conosciuti emette forti onde radio.

Ma quindi cosa sono i Quasar? e perché ci hanno tratto per tanto tempo?



I Quasar nono sono altro che buchi neri. Buchi neri supermassicci per la precisione. Eh... buchi neri molto luminosi anche. Di gran lunga gli oggetti più luminosi dell'universo.
Sono talmente luminosi da nascondere completamente la luce dei miliardi di stelle contenute nella loro galassia ospite!
Per capire meglio la struttura di un buco nero vi invitiamo a leggere questo approfondimento: Come sono fatti i buchi neri

Credete che questo sia un grande controsenso? Non lo è affatto, ed ecco il perché.
I Quasar, che ribadiamo sono a tutti gli effetti dei buchi neri, hanno dimensioni davvero enormi. Alcuni possono raggiungere la dimensione del nostro sistema solare.
E la massa di un Quasar può andare da milioni a miliardi di masse solari.



Come si può immaginare la forza di gravità nei pressi di questi buchi neri super massicci è davvero spaventosa. Anzi, ad essere sinceri è davvero difficile da immaginare.
Per intenderci, i quasar sono in grado di attirare a se, e in modo molto veloce, materia fino a distanze di anni luce. E la materia che finisce nelle lori fauci vi entra a velocità elevatissima: dai 3.000 ai 10.000 km/s!

Questo flusso di materia crea attorno al Quasar un vortice luminosissimo a causa della temperatura che si viene a creare, e dell'energia che viene prodotta.
Pensate, un Quasar converte in energia circa la metà della massa che inghiotte!

Ecco svelata la luminosità dei Quasar. E per paradosso essendo i Quasar dei buchi neri, possiamo dire che i buchi neri possono in queste circostanze essere gli oggetti più luminosi dell'universo.

E non è tutto.
I Buchi neri hanno un campo magnetico molto forte. Pensate a quanto possa essere forte il campo magnetico di un buco nero super-massiccio e quanto quello di un Quasar per come lo abbiamo descritto sopra.
I fortissimi campi magnetici che avvolgono i Quasar sono in grado di intrappolare parte della materia che il quasar divora e di riversarla verso l'esterno lungo i poli magnetici.

Questo fenomeno crea dei getti di materia ed energia potentissimi e luminosissimi.
Possono percorrere centinaia di anni luce attraverso la galassia ospite, e in molti casi sono anche in grado di uscirne! dando luogo ai venti galattici.

I primi anni dopo la loro scoperta, i Quasar ci hanno tratto in inganno perché nonostante la loro dimensione reale, essi appaiono grandi come stelle.
E quindi non si riusciva a capire come facesse una stella così lontana ad essere così luminosa e ad emettere così tante onde radio.
Solamente con le scoperte dei nuclei galattici attivi e del comportamento dei dischi di accrescimento dei buchi neri si è giunti alla conclusione che in realtà i Quasar non hanno niente a che vedere con le stelle.

Aver capito che i Quasar sono in realtà buchi neri super-massicci nei cuori di alcune galassie attive ci ha anche fatto capire che non tutti i quasar sono così lontani.
Ma i più lontani, e di conseguenza quelli più luminosi visto che riusciamo a vederli, si allontanano dalla terra ad una velocità che si avvicina quasi ad un terzo di quella della luce.

Ora sorgono spontanee alcune domande.
Tutti i buchi neri super-massicci nei centri galattici sono Quasar? E perché alcuni di loro emettono forti radiazioni radio come avviene per i nuclei galattici attivi? E che differenza c'è tra un Quasar e un nucleo galattico attivo?



La risposta è che Quasar, buchi neri super-massicci, e nuclei galattici attivi, sono la stessa cosa.
Quando un buco nero super-massiccio nel cuore di una galassia non sta divorando materia, rimane invisibile (se non per l'effetto della sua gravità sugli oggetti circostanti, come avviene nel caso nel nucleo della Via Lattea)
Nel cuore della Via Lattea ci sono centinaia di buchi neri. In questo approfondimento ne parliamo: Centinaia di buchi neri nel centro della Via Lattea
Ma non appena questo buco nero inizia a divorare materia, ecco che il disco di accrescimento si infiamma e con lui i getti di energia che vengono espulsi dai poli magnetici.
Ecco che si accende il Quasar, e che il nucleo della galassia diventa un nucleo galattico attivo.
Quando il pasto del buco nero termina, il Quasar torna ad essere un oscuro buco nero dalle dimensioni del sistema solare.
Si può quindi dire che il Quasar sia in realtà uno stato del buco nero, e che lo è solo per certi periodi.

Per concludere, l'angolo del polo magnetico di un Quasar rispetto alla terra cambia sensibilmente il modo in cui questo viene osservato.
Quindi, quando i jet di una quasar sono perpendicolari a noi, ci appare come radio-galassia.
Quando invece i jet hanno angolazioni diverse vediamo quelli che chiamiamo comunemente Quasar.
Infine, nei rari casi in cui questi getti sono puntati verso la terra, li chiamiamo Blazar, e ci appaiono ancora più luminosi dei Quasar, anche se sono proprio Quasar.

L'infografica che trovate nella pagina aiuta a comprendere i diversi nomi in base ai punti di vista.

Quasar, galassie attive, buchi neri e Blazar: tanti nomi per indicare la stessa cosa!





giovedì 23 agosto 2018

#CieloProfondo #Galassie #Quasar #Universo

Introduzione alle galassie oscure


Quando parliamo di galassie, pensiamo ad agglomerati luminosi e colorati di stelle, gas e polvere.
Ma nell'universo, in accordo con le previsioni della teoria del big bang, esistono anche galassie molto diverse da queste: le galassie oscure.


Prima di tutto: non si tratta di galassie composte di materia oscura.
Le galassie oscure sono galassie con pochissime stelle, o nella maggior parte dei casi non ne hanno proprio.
Sono costituite prevalentemente da gas denso che non è illuminato da stelle.
Come si può facilmente intuire questa loro caratteristiche le rende molto difficili da vedere e la loro esistenza, fino a pochi anni fa solo teorica, può essere percepita soltanto se sono vicine a oggetti molto luminosi. Ad esempio dei quasar.



Le galassie oscure, la maggior parte delle quali osservate a circa 10 miliardi di anni luce di distanza (e quindi vecchie di circa 10 miliardi di anni), costituiscono le fondamenta delle galassie che osserviamo oggi in tutto l'universo.
Per qualche ragione queste galassie non sono state in grado di formare stelle.
Alcuni modelli teorici prevedono che le galassie oscure siano state molto comuni nell'universo primordiale, quando le galassie avevano più difficoltà a generare le stelle perché la loro densità di gas non era sufficiente per collassare e accendere la scintilla di formazione stellare.
Soltanto in seguito le galassie hanno iniziato i processi di formazione stellare, diventando come le vediamo oggi.
Questa ipotesi sarebbe suggerita anche dal fatto che molte tra le galassie oscure conosciute si trovano a distanze che vanno dai 10 agli 11 miliardi di anni luce.
Questo significa che guardandole stiamo vedendo com'era l'universo 11 miliardi di anni fa.

A quell'epoca l'Universo nel suo complesso stava formando stelle ad un ritmo frenetico: circa 20 volte più veloce di oggi. Lo stesso periodo rappresenta anche un momento chiave per la formazione di grossi buchi neri, a causa della abbondanza di stelle molto massicce e dalla vita molto breve. Quei buchi neri che oggi osserviamo sotto le vesti di quasar luminosi.

Stiamo quindi parlando di un'epoca molto fertile, in cui abbiamo avuto galassie che sono maturate molto rapidamente e in cui il tasso di formazione stellare era molto forte.
Le galassie oscure osservate nello stesso periodo ci fanno pensare al fatto che esse siano state le progenitrici delle galassie: ciò che c'era prima che queste accendessero miliardi di stelle.

In poche parole le galassie oscure sono probabilmente gli elementi costitutivi delle galassie moderne. Inoltre le galassie oscure, durante le collisioni galattiche, portano alle grandi galassie una grande quantità di gas che finisce con l'accelerare la formazione stellare nelle galassie più grandi.

Anche la Via Lattea potrebbe essere stata una galassia oscura, che si è fusa con galassie oscure vicine dando vita alla formazione stellare e a tutto ciò che vediamo oggi nella nostra galassia.
In realtà anche molte piccole galassie satelliti al Gruppo Locale potrebbero essere tuttora delle galassie oscure. Gli astrofisici però su quest'ultimo punto rimangono molto cauti e non ci sono prove osservative in proposito.

Ma visto che le galassie oscure sono così difficili da osservare, come facciamo a vederle e ad osservarle?
La risposta sta nelle emissioni provenienti dall'idrogeno al loro interno.
Queste emissioni vengono generate quando la luce ultravioletta si riflette sul gas della galassia oscura e provoca l'eccitazione dei suoi atomi. per la verità l'universo è ricco di luce ultravioletta, ma di solito l'emissione risultante è molto debole.
Quindi per poter osservare le galassie oscure con questo metodo è necessario guardare in zone dove la luce ultravioletta è molto forte rispetto ai livelli di fondo. Per esempio nei pressi di un quasar.

sabato 7 aprile 2018

#AmmassiGalattici #BigBang #Galassie #Universo

cosa sono i vuoti cosmici?

Zone dell'universo dove inspiegabilmente manca la materia! Zone dell'universo che sfidano le attuali leggi cosmologiche e le teorie sul big bang. Cosa sono? dove sono? e come si sono formati?

I vuoti dell'universo sono zone in cui manca la materia. In queste zone il numero di galassie è molto inferiore alla norma o per lo meno a quanto ci si aspetterebbe guardando altrove. Un particolare degno di nota, e che i cosmologi non sono ancora riusciti a spiegare, è che le pochissime galassie presenti in questi vuoti hanno una forma tubolare e allungata.
Al di la del nome che potrebbe trarre in inganno, non sono quindi zone assolutamente prive di materia ma con una bassissima distribuzione di questa.
Loading...
Ovviamente su scale galattiche ed extra-galattiche una distribuzione estremamente bassa di materie e di galassie da luogo a grandi spazi vuoti, più grandi di quelli che ci sono tra una galassia e l'altra all'interno di un ammasso di galassie.
Avete presente i filamenti galattici che tengono assieme la tela cosmica formata da ammassi di galassie e super ammassi? i vuoti cosmici sono quelle zone tra i filamenti dove sembra non esserci nulla.
Abbiamo parlato approfonditamente qui delle ultime scoperte sui filamenti galattici


I Vuoti e i grandi vuoti dell'universo risultano essere estremamente bui ma anche estremamente freddi e i cosmologi hanno preso coscienza della loro esistenza osservando il cielo ai raggi infrarossi, capaci di mettere in risalto le zone dell'universo più calde e quelle più fredde.
In questo modo i cosmologi studiano il così detto CMB (fondo a microonde cosmico).
Il fondo a microonde cosmico è un'impronta delle radiazioni a microonde generatasi appena 379.000 anni dopo il Big Bang.
Questa impronta ci fa vedere com'era l'universo nella sua età primordiale, ed è la visione più antica che abbiamo dell'universo.

ma ora parliamo di un paio di vuoti enormi, chiamati super vuoti, e che lasciano ancora oggi i cosmologi senza risposte.
Il primo lo troviamo nella costellazione dell'eridano, scoperto nel 2004 analizzando la radiazione di fondo usando il telescopio spaziale WMAP della NASA.
E' una zona in cui la temperatura media si aggira appena sui 3 gradi sopra allo zero assoluto! Si trova a quasi 2 miliardi di anni luce dalla terra e al suo interno mancano all'appello circa 10.000 galassie, e quindi una equivalente quantità di materia. In termini percentuali troviamo circa il 30% in meno della materia che troveremmo mediamente in altre zone dell'universo con la stessa dimensione.
Anche se la teoria del Big Bang consente aree più fresche e più calde, la dimensione di questo vuoto però fatica ad adattarsi ai modelli previsti. In poche parole, è troppo grande per esistere, quindi i cosmologi stanno ancora cercando di spiegarne l'esistenza.
Questa zona è stata studiata non solo nello spettro dell'infrarosso ma anche sulla parte radio dello spettro. Lo studio radiofonico ha scoperto un numero insolitamente basso di sorgenti radio in tutta l'area del Vuoto, infatti le emissioni radio provenienti da questa zona sono del 45% inferiori alla media delle altre zone dell'universo.

Un altro esemplare di queste zone si trova nella costellazione del Boote.
Si trova a circa 700 milioni di anni luce dalla Terra e ha una forma sferica che i cosmologi hanno stimato avere un diametro di 250 milioni di anni luce: pensate, circa lo 0,27% del diametro dell'universo osservabile!
Al suo interno la materia è pochissima, in una sfera immaginaria larga 250 milioni di anni luce sono presenti all'incirca soltanto 60 galassie.
Per fare un paragone più comprensibile sarebbe come trovare 95 chilometri quadrati di città in una zona della terra più grande degli Stati Uniti (e stiamo parlando solo di due dimensioni).
Solo per fare un confronto, la nostra Via Lattea ha nel suo circondario circa 30 galassie in uno spazio di appena 3 milioni di anni luce.
Allo stesso modo il vuoto di Bootes dovrebbe contenere circa 10.000 galassie considerando che la distanza media tra le galassie altrove nell'Universo è di qualche milione di anni luce.
Se la Via Lattea si trovasse al centro di questo vuoto, non avremmo visto né scoperto altre galassie fino all'avvento dei più moderni telescopi!


Ma come si sono formati questi super vuoti cosmici?
I cosmologi hanno ancora le idee tuttaltro che chiare su come questi vuoti possano esistere, ed il motivo è molto semplice.
Le simulazioni computerizzate suggeriscono che vuoti più piccoli, molto più comuni nell'universo, siano causati dalle galassie che si avvicinano l'una all'altra a causa dell'attrazione gravitazionale. Questo fa sì che le regioni limitrofe si svuotino e, poiché il processo è auto-rinforzante, tende a formare vuoti sempre più grandi.

Per capire meglio questo concetto bisogna fare un salto indietro fino ai primordi del del tempo e dello spazio.
Subito dopo il Big Bang infatti, non c'erano stelle, galassie o ammassi di galassie. L'universo era solo un brodo di materia più o meno omogeneo. Non essendo perfettamente omogeneo quindi c'erano delle piccole fluttuazioni di densità: delle imperfezioni.
Dunque in alcuni punti la materia era più densa e in altri meno. Dove la materia era più densa, c'era anche più gravità, viceversa dove la materia era meno densa c'era meno gravità.
Nel tempo le zone più dense e con più gravità hanno iniziato ad agglomerarsi formando le proto-galassie.
Di fatto le zone dell'universo più ricche di materia sono cresciute su scale caratteristiche, determinate non solo dalla gravità, ma anche da altre proprietà dei gas che le costituivano.
Il risultato è che l'aggregazione si è manifestata su scale caratteristiche e ben precise. Le galassie hanno dimensioni tipiche. Gli ammassi di galassie hanno dimensioni tipiche e simili. I cosmologi hanno osservato una distribuzione statistica di tutto ciò, e questa distribuzione è stata confermata dai modelli di simulazione.
Ma proprio qui nascono i dubbi e le perplessità dei cosmologi perché tutto questo, però, non spiega l'esistenza di vuoti così enormi come quelli dell'Eridano e del Boote. Infatti secondo i cosmologi, da quando è nato l'universo, non c'è stato abbastanza tempo per la forza di gravità per "svuotare" quantità di spazio così grandi!