martedì 31 luglio 2018

nebulose stelle supernovae via lattea

Distante 24.000 anni luce dalla terra, Cygnus X-3 è una delle più potenti sorgenti binarie di raggi-x del cielo.

Inizialmente gli astrofisici classificarono questo oggetto etichettandolo come micro-quasar.
Oggi invece sappiamo che si tratta di un sistema binario molto strano, ma non altrettanto raro.
Stiamo parlando di una stella molto grande, probabilmente una stella di Wolf-Rayet intorno alla quale ne sta orbitando una molto piccola ma estremamente massiccia: quasi sicuramente una stella di neutroni o, forse, un buco nero.
Pensate, questa stella di neutroni orbita attorno alla stella gigante in un periodo di appena 5 ore, detenendo così il primato di coppia binaria più veloce!
La potenza di questa coppia risiede come sappiamo nel fatto che la stella di neutroni, con la sua massa estrema sta pian piano divorando la superficie della compagna gigante.

Questo fenomeno genera una fortissima emissione di raggi-x e, nel lungo periodo, darà sicuramente luogo ad una fortissima esplosione di supernova: una supernova di tipo 1A.
Se pensiamo che anche la stella di neutroni della coppia si è formata molto probabilmente da una esplosione di supernova, ci accorgiamo che ci troveremo davanti ad un doppio evento di supernova.
Potete approfondire qui come si formano le supernovae: Come nascono le supernovae

Ma non è tutto, Cygnus X-3 è molto interessante anche come sorgente di raggi gamma, infrarossi e di onde radio.
E' una delle poche fonti di raggi cosmici ad altissima energia della nostra galassia. Più di una volta ha dato vita ad anomale ed insolite emissioni di raggi gamma che anno messo in discussione la sua origine, accendendo teorie secondo la quale la stella orbitante potrebbe non essere una stella di neutroni ma addirittura una esotica stella di quark!

Ma questo Mostro stellare non si è distinto solamente per le sue intense emissioni di raggi cosmici e raggi-x. Nel 1972 ad esempio, Cygnus X-3 ha dato spettacolo anche come emittente radio con una esplosione che ha aumentato l'emissione radioelettrica di mille volte rispetto alla sua media.
Ancora oggi non sappiamo dare una risposta a questa violentissima raffica di emissioni radio, ma da quella prima volta Cygnus X-3 ha iniziato ad avere esplosioni radio minori con una cadenza precisa di 367 giorni! Sappiamo che la velocità dell'onda d'urto di queste esplosioni è pari ad un terzo della velocità della luce!

Come avrete capito, stiamo parlando di un vero e proprio mostro celeste, un oggetto che emette radiazioni fortissime e con elevata velocità. E nei cui pressi la distorsione spazio-temporale è davvero forte.

Eppure, nei dintorni di questo oggetto a poche migliai di anni luce di distanza, sta nascendo un nuovo sistema Stellare.
E' stata infatti osservata una emissioni di raggi-x aggiuntiva, molto vicina a Cygnus X-3. Talmente vicina da essere stata confusa con una emissioni minore proveniente da Cygnus X-3.

Si tratta di una piccola nube oscura dal diametro di poco inferiore ad un anno lune. Questa nube si comporta come un piccolo specchio che riflette verso la terra alcuni raggi-x provenienti dalla vicina Cygnus X-3. Da qui il simpatico nome: "Il piccolo amico di Cygnus X-3"

Le osservazioni indicano che la massa di questa nube varia, in maniera molto imprecisa, tra 2 e 24 volte quella del Sole. All'interno, le osservazioni spettroscopiche hanno rilevato la presenza di monossido di carbonio.
Tutti questi indizi fanno pensare che si tratti di un globulo di bok. Questo significa che stiamo assistendo alla nascita di una stella e un conseguente sistema planetario a pochi anni luce da un mortale generatore di radiazioni cosmiche quale è Cygnus X-3!
A confermare la genesi di un sistema proto-planetario c'è anche la presenza di un getto energetico dall'interno del Piccolo Amico, una chiara indicazione che nei meandri del globulo di bok, una stella abbia già iniziato a formarsi.
Potete scoprire tutto quello che c'è da sapere sui globulo di bock qui: Cosa sono i globuli di bok?

Il piccolo amico di Cygnus X-3 offre un punto di vista completamente nuovo per lo studio di questi embrioni proto-planetari.
Solitamente studiamo i globuli di bok analizzando la luce che assorbono, oppure le deboli emissioni radio che producono. In questo caso invece possiamo studiare il bozzolo planetario sfruttando la riflessione dei raggi-x. Se ci aggiungiamo il fatto che con i suoi 20.000 anni luce di distanza è il globulo di bok più lontano osservato, be la cosa diventa davvero interessante!

Ma come facciamo a sapere la distanza di questo globulo di bok?
E' molto semplice, come abbiamo detto all'inizio, Cygnus X-3 dista dalla terra 24.000 anni luce, ed emette un fascio di raggi-x con una periodicità regolare di 5 ore. Quindi anche i raggi-x riflessi dal piccolo amico verso di noi hanno una regolarità di 5 ore, ma sono leggermente ritardati a causa della sua differente posizione.
E' proprio questo ritardo ad averci aiutato a calcolare con precisione la sua distanza.

La scoperta e la posizione del piccolo amico da delle conferme ad una teoria secondo la quale il sistema binario Cygnus X-3 non sia nato li dove lo vediamo adesso.
La teoria pone le sue radici nel fatto che una delle due componenti del sistema binario è una stella di Wolf-Rayet: una stella molto massiccia la cui vita è molto breve. Quindi essendo ancora nel pieno della sua esistenza la sua nascita non è molto lontana nel passato.
Ma questo tipo di stelle, di fatto molto giovani, si trovano nelle braccia a spirare delle galassie e della Via Lattea. Dove è presente ancora molto gas primordiale, in attesa della scintilla che dia origine alla nascita di stelle. Ma Cygnus X-3 si trova fuori dai bracci.

La spiegazione teorica che giustificherebbe questa presenza fuori luogo è che l'esplosione di supernova che ha dato origine alla stella di neutroni (o al buco nero) che ruota attorno alla stella di Wolf-Rayet sia avvenuta in realtà nel braccio vicino della Via Lattea, dove ad una distanza di 4.000 anni luce si trova anche "il piccolo amico", e sia stata talmente violenta da allontanare il sistema binario dal luogo iniziale, quella in cui si trova ancora oggi il globulo di bok. Ciò non significa che la stella di Wokf-Rayet sia nata dal "piccolo amico", ma che entrambe potrebbero essere nati da una stessa antica nube molecolare gigante di cui il globulo di bok ne è un rimasuglio.

Supponendo che Cygnus X-3 e il Piccolo Amico si siano formati, seppure indipendentemente, uno vicino all'altro, Cygnus X-3 dovrebbe essere stato gettato via ad una velocità comprese tra i 180 e 900 chilometri al secondo!

La prossima volta che guarderete la costellazione estiva del Cigno, pensate che vicino alla stella che unisce le ali al corpo, quella sotto Deneb, la stella che rappresenta la coda del Cigno, li vicino si trova questa stella di Wolf-Rayet intorno alla quale ruota o una stella di neutrini (o un buco nero) emettendo una altissima quantità di raggi-x, e il piccolo amico.
Costellazione:Cigno
Ascensione retta:20h 32m
Declinazione:+40° 57′
Distanza di Cygnus X-324.000 anni luce
Distanza del piccolo amico:20.000 anni luce

martedì 13 marzo 2018

nebulose stelle via lattea

Cosa sono i globuli di bok?

I globuli di bok sono delle zone estremamente buie. Sono sempre stati, fin dal giorno della loro scoperta, tra gli oggetti più misteriosi e meno conosciuti dell'universo. Il loro mistero e il loro fascino sono dovuti al fatto che è difficile capire cosa si celi al loro interno. Le nuove tecnologie però hanno permesso di dare uno sguardo un po più chiaro all'interno dei loro misteri.

Ma iniziamo dal principio, I globuli di Bok sono nuvole molecolari molto compatte e isolate, che appaiono come piccoli globuli scuri all'interno di nebulose diffuse molto estese, come pad esempio i pilastri della creazione nella nebulosa Aquila o nella estesissima zona nebulare nella costellazione di Orione di cui m42 è solo una piccola parte.
Abbiamo parlato delle nebulose diffuse in questo nostro approfondimento: Nebulose diffuse, ricordi dell'universo primordiale

La dimensione dei globuli di bok va di solito da 1 a 3 anni luce, risulta quindi evidente che solo i più vicini sono ben osservabili.
La massa de globuli di bok invece è molto varia. Secondo i cosmologi dalle 15 alle 60 masse solari. Quando superano questa massa si parla nel senso più classico di nebulose oscure, che sono molto più estese.
Questi oggetti sono luoghi davvero estremi, con temperature che vanno oltre il glaciale: infatti la temperatura dei globuli di bok tocca i -260° C.In poche parole i globuli di bok sono tra gli oggetti celesti più freddi conosciuti.
Loading...

A volte capita che i margini di questi meandri nebulari bui e freddi vengano ionizzati dalle stelle vicine. Spesso queste stelle sono appena nate dalla nebulosa madre in cui si trova l'ovulo di bok, e sono quindi stelle molto giovani e cariche di energia.
Il risultato è uno spettacolare anello luminescente che circonda l'ovulo di bok rendendolo unico.
Nella foto qui sotto vedete uno esempio di questo fenomeno: si tratta di un ovulo che si trova all'interno della nebulosa Carena, soprannominato "bruco" per il suo aspetto.
Appare evidente che lungo il perimetro, l'ovulo scuro sia delimitato da una zona molto luminosa che risplende addirittura rispetto alla nebulosa sullo sfondo.


Ma perché i globuli di bok sono così scuri e gelidi?
La risposta a questa domanda è nella composizione dei globuli. All'interno dei globuli di bok non è presente solamente del gas, ma troviamo anche una importante presenza di polvere.
La densità interna di queste zone è piuttosto elevata rispetto ai valori tipici dello spazio interstellare e della nebulosa ad emissione circostante.
Per questo motivo i globuli di bok assorbono e disperdono la luce della nebulosa o delle stelle che hanno attorno, e questa non riesce a penetrarli. Di conseguenza appaiono scuri e freddi.
Com l'avvento delle nuove tecnologie osservative che ci permettono di esplorare questi oggetti anche a lunghezze d'onda differenti, le cose sono un po' cambiate e i cosmologi oggi sono in grado di penetrare leggermente questi meandri usando le osservazioni nell'infrarosso.
Queste osservazioni hanno lasciato la comunità scientifica sorpresa, e hanno confermato la teoria che già Bart Bok, scopritore di questi oggetti, aveva approcciato nel 1940: All'interno dei globuli di bok stanno nascendo delle proto-stelle.

Ma come facciamo ad esserne certi della formazione stellare?
Il processo di formazione stellare oggi è ormai abbastanza noto ai cosmologi. Noi oggi non ne entreremo nel merito perché ne parleremo più a fondo in un approfondimento che è già in fase di scrittura, ma il collasso gravitazionale che avviene all'interno dei globuli di bok lascia due firme indelebili: Forti emissioni di carbonio, e flussi energetici bipolari.

I cosmologi sono stati in grado di osservare queste due caratteristiche nella maggior parte dei globuli di bok che conosciamo.
In questo approfondimento: La nascita di una stella in diretta potete scoprire, ma soprattutto veder evolversi, una delle più grosse manifestazioni di flusso energetico bipolare generato da una proto-stella

Ma le cosa più sorprendente è che in alcun casi le osservazioni all'infrarosso, quindi capaci di percepire oggetti a bassissime temperature, hanno messo in luce flebili corpi ancora molto deboli sia in termini di luminosità che di calore, all'interno della quale non si è ancora accesa la miccia della combustione nucleare: delle vere e proprie proto-stelle in uno stadio precedente a quello di stelle.

I globuli di bok sono oggetti straordinari: zone riservate, angoli privati all'interno di nebulose luminose dove piccole stelle come il sole stanno per venire alla luce. Sono come dei bozzoli dove una bellissima farfalla termina la propria metamorfosi prima di mostrarsi al mondo in tutti i suoi colori e la sua bellezza.
Le loro dimensioni, inferiori ai 3 anni luce, si allineano benissimo con quelle che potrebbero poi essere le dimensioni di un sistema stellare. Basti pensare che le dimensioni del nostro Sistema Solare arrivano a raggiungere i due anni luce.
Questo ci fa sognare, perché quando ne guardiamo uno su una lastra fotografica è come se stessimo guardando il Sole ed il Sistema Solare nei primissimi attimi della loro formazione.



mercoledì 24 gennaio 2018

nebulose via lattea
Le nebulose diffuse oltre ad essere indubbiamente tra gli oggetti più scenici ed eleganti del cielo, molto spesso rappresentano anche le ultime tracce dell'universo primordiale all'interno delle galassie.

Le nebulose diffuse sono nuvole di materia interstellare. sottili ma diffuse agglomerazioni di gas e polvere. Rimasugli di antico gas primordiale che ancora non ha generato stelle. Tracce primordiali del gas sopravvissuto dai tempi in cui l'universo dopo il big bang non aveva ancora visto accendersi stelle nelle galassie. Quando guardiamo queste nebulose è come se guardassimo ciò che esisteva al tempo delle prime proto-galassie.
Sono escluse da queste considerazioni le nebulose diffuse generate dalla morte di una stella, come spiegato in questo articolo: nebulose planetarie.
Oppure quelle generate dall'esplosione di supernovae, in questo approfondimento scoprite come: Cosa sono le supernovae?.

In questo approfondimento ci concentreremo su quelle nebulose diffuse non generate da morti stellari, ma costituite da gas primordiale e che esistono da quando esistono le galassie.
Queste sono le nebulose ad emissione e le nebulose a riflessione.
Stiamo parlando di nebulose come M42 (Nebulosa di Orione), o come la nebulosa rosetta, oppure ancora la nebulosa aquila, o la nebulosa tarantola.
Questi oggetti sono estremamente antichi, e prima che le galassie si addensassero di stelle erano tutto ciò che esisteva nelle proto-galassie e nell'universo.
Si, perché questo tipo di nebulose sono i luoghi in cui nascono le stelle. Quello che vediamo oggi nella nostra galassia e nelle galassie vicine sono zone dove i venti stellari e le perturbazioni gravitazionali non hanno ancora innescato il meccanismo che porta alla formazione stellare. E quando queste nebulose sono davvero grandi non generano singole stelle ma addirittura ammassi stellari: gli ammassi aperti.
Abbiamo parlato in maniera approfondita di questi ammassi qui: gli ammassi aperti.

Ma perché le vediamo così belle e brillanti?
La risposta ci porta a classificare le nebulose diffuse in due sotto tipi: Le nebulose ad emissione e le nebulose a riflessione. 


mercoledì 29 novembre 2017

cielo profondo galassie nebulose stelle via lattea

Nebulose planetarie

Le nebulose planetarie sono importanti fonti di gas nel mezzo interstellare, rilasciando il loro materiale nello spazio a velocità che vanno dai 25 ai 50 km/h. Gli astronomi calcolano che ci siano circa 20.000 nebulose planetarie nella Via Lattea, ciascuno dei quali rappresenta gas espulso abbastanza recentemente da una stella centrale giunta al termine della sua evoluzione. <
Di fatto però sono state catalogate solo circa 1.800 nebulose planetarie, a causa dell'oscuramento provocato dalle sacche di polvere oscura nella galassia.

Le nebulose planetarie sono un tipo di nebulose luminose che si sta espandendo lentamente sotto forma di gusci di gas, espulsi da stelle che stanno morendo.
Osservate al telescopio hanno un aspetto relativamente rotondo e da questo loro aspetto deriva il loro nome perché i primi osservatori trovavano una forte assomiglianza con i dischi dei pianeti.


Rispetto a nebulose diffuse come M42, le nebulose planetarie sono piccoli oggetti con un raggio tipicamente di qualche anno luce e contenenti una massa di gas pari a circa 0,3 masse solari. per fare un esempio, la Nebulosa Elica (NGC 7293) nella costellazione dell'Acquario, ha una dimensione apparente di circa 20 minuti d'arco: due terzi delle dimensioni angolari della Luna.
Le nebulose planetarie sono molto più dense rispetto alla maggior parte delle nebulose di gas diffuso.
Tipicamente contengono dai 1.000 ai 10.000 atomi per cm cubico. Hanno generalmente confini esterni regolari e netti, e spesso hanno anche un confine interno relativamente nitido che da loro l'aspetto di un anello.
Le immagini ad alta risoluzione di una nebulosa planetaria di solito mettono in mostra una interessantissima particolarità di questi oggetti: piccoli nodi e filamenti, i così detti nodi cometari.
Abbiamo realizzato un interessante approfondimento su queste favolose formazioni a questo link: Cosa sono i nodi cometari.

Tutte queste nebulose hanno una stella centrale più o meno visibile, ed è proprio questa stella morente che fornisce la radiazione ultravioletta necessaria per ionizzare il gas circostante rendendolo luminoso e colorato.
Queste stelle sono tra le più numerose e la loro evoluzione è relativamente rapida.
Esse hanno una temperature molto più alta di quelle neonate presenti nelle normali nebulose diffuse.

Ma come nascono questi oggetti che sfruttano la morte della loro stella per diventare così belle e colorate?

Tutto inizia dalla morte della stella centrale, una stella gigante rossa giunta al termine di suoi processi nucleari. In questa fase la forza di gravità inizia a perdere piede e si verifica una rapida perdita di massa sotto forma di vento stellare. Gli astrofisici stimano che queste stelle perdano giornalmente una massa pari a circa lo 0.01% della massa terrestre e che questa si allontani dalla stella ad una velocità di circa 30 km/secondo. 


All'inizio di questa fase la gigante rossa potrebbe anche rimanere oscurata dalla polvere di elementi pesanti che si forma durante il rilascio e la perdita di massa. 


Al termine di questa fase, chiamata appunto "di perdita di massa", la stella è rimasta senza i suoi elementi superficiali, ed inizia sorprendentemente a diventare sempre più calda. Questa inversione di rotta avviene perché il suo nucleo caldo rimane esposto avendo perso gli strati superficiali. 


A questo punto il gas espulso inizia ad essere ionizzato (wikipedia: ionizzazione dei gas) dalla radiazione proveniente dalla stella calda.

La zona di ionizzazione si muove costantemente verso l'esterno lambendo il materiale rilasciato dall'espulsione di massa iniziale.
Naturalmente all'inizio le aree ionizzate sono quelle più prossime alla stella. Ma con il passare del tempo la ionizzazione si espande raggiungendo le zone più esterne.
Tutto ciò visto dalla terra appare ancora come una stella, perché il disco nebulare venutosi a formare è ancora troppo piccolo per essere osservato dalle distanze cosmiche.
Il gas della nube infatti ha una densità ancora relativamente alta: circa un milione di atomi per centimetro cubo e diventerà più diluita a mano a mano che il gas si espande.

Dunque l'espansione inesorabile continua, e la diminuzione della intensità del gas porta la nebulosa alla fase intermedia, cioè la fase in cui la densità scende al punto in cui viene ionizzata l'intera massa del gas stesso.
E' proprio in questo momento che nasce la magia di luce e colore delle nebulose planetarie.
La maggior parte delle nebulose planetarie che osserviamo si trova in questa fase intermedia.

Ma cosa ha in serbo il futuro per questi splendidi oggetti?
Beh... come tutte le cose belle, anche lo splendore di queste magnifiche nebulose avrà una fine.
Con il passare del tempo la stella centrale diventerà sempre meno luminosa, fino a non poter più fornire una quantità sufficiente di radiazioni ultraviolette per mantenere ionizzata la nebulosa.
Ancora una volta le regioni esterne della nebulosa diventeranno neutre e quindi invisibili.
Alla fine il gas che via via è diventato sempre più buio, si mescolerà al gas interstellare e la nebulosa si sfalderà scomparendo.


La stella centrale
Le stelle nel cuore delle nebulose planetarie meritano un po di attenzione.
Gli astronomi osservando i loro spettri si sono resi conto che la maggior parte di esse è molto calda e che hanno spettri molto simili alle stelle di Wolf-Rayet
Le stelle centrali nelle giovani nebulose planetarie (cioè nella fase successiva a gigante rossa) sono calde quanto le stelle massicce di classe O e B, che vanno dai 35.000 ai 40.000 gradi centigradi. La loro luminosità però è circa 10 volte più debole.
Paragonate al sole queste stelle hanno circa la metà del suo diametro ma sono 1.000 volte più luminose.
A mano a mano che la nebulosa si espande invecchiando, la stella aumenta la sua luminosità e la sua temperatura, ma il suo raggio diminuisce costantemente.
Dopo soli 5.000 anni circa dall'inizio della loro espansione iniziale, la luminosità di queste stelle raggiunge un valore che è circa 10.000 volte la luminosa del Sole!

Da questo punto in poi la stella diventa più debole, ma mentre il restringimento della stella continua per qualche tempo, la temperatura continua ad aumentare fino a raggiungere i 200.000 gradi centigradi: quasi cinque volte più calda della maggior parte delle altre stelle della galassia.
Una volta raggiunti questi livelli vertiginosi, anche la sua temperatura inizia a scendere e nel giro di circa 10.000 anni queste stelle diventano delle nane bianche. Stelle molto dense, dalle dimensioni simili alla terra ma con una densità di migliaia di chilogrammi per centimetro cubo.
Gli astrofisici concordano sul fatto che queste nane bianche debbano ottenere quasi tutta la loro energia dalla contrazione che subiscono durante la fase finale del processo, e non da combustione nucleare. Questo come conseguenza del fatto che non dovrebbero più contenere idrogeno o elio, tranne forse in un guscio molto sottile sulla loro superficie.


Composizione chimica
Ma torniamo alle nebulose planetarie e alla loro composizione chimica.
Queste nebulose, essendosi formate con i resti di una stella morente, sono chimicamente ricche di elementi prodotti dalle reazioni nucleari all'interno della stella centrale.
Quindi la loro composizione chimica dipende molto dal tipo di stella madre e dalla sua generazione stellare.
Alcune sono molto ricche di carbonio e possono raggiungere livelli di questo elemento doppi rispetto all'ossigeno, altre invece sono ricchissime di azoto. Le più luminose che conosciamo, osservate nelle galassie esterne, ne sono esempi evidenti.

La maggior parte delle nebulose planetarie contengono pochissimo idrogeno, ormai esaurito dalle reazioni nucleari della stella centrale quando era nel pieno della sua attività.

Grazie al fatto che questi oggetti riflettono la composizione iniziale delle stelle che li hanno generati, gli astronomi usano le nebulose planetarie anche per studiare il tasso di presenza degli elementi iniziali presenti nella galassia madre.

Ma nelle nebulose planetarie, oltre a gas sono presenti anche piccole quantità di polvere, che ci appaiono sotto forma di nodi: i nodi cometari. Sono formazioni straordinarie, composte da microgranuli di materiale più "polveroso" rispetto al gas circostante.
In generale questa polvere non può essere vista direttamente finchè l'onda di ionizzazione proveniente dalla stella centrale non la colpisce.
Potete trovare un interessante approfondimento sui nodi cometari a questo link: I nodi cometari.

La presenza di polvere indica chiaramente che le nebulose planetarie sono ricche di elementi pesanti.

Esistono tuttavia due eccezioni a quanto abbiamo detto: una si trova nell'ammasso globulare M15 (cosa sono gli ammassi globulari?) e l'altra nell'alone esterno della via lattea.
Gli astronomi si sono accorti che queste due nebulose planetarie hanno un contenuto molto basso di elementi pesanti, circa la metà della media osservata nella maggior parte delle altre nebulose planetarie. Entrambe le due nebulose in questione sono molto antiche, e questo suggerisce che il gas primordiale nella via lattea aveva un contenuto di elementi pesanti basso, e che quindi sia nata molto presto nel ciclo di vita dell'universo.


Posizione nella galassia
A proposito di età, uno dei migliori indicatori dell'età media degli oggetti galattici è la loro posizione nella galassia ed il loro movimento.
Gli oggetti più giovani sono nelle braccia a spirale, vicino al gas da cui sono stati formati. Di conseguenza gli oggetti sono distanti dal piano galattico e dalle braccia a spirale.
Usando questi criteri valutativi scopriamo che le nebulose planetarie sono oggetti di mezza età; Le osservazioni infatti le collocano tra le braccia e il nucleo, con concentrazione in aumento verso il nucleo. I loro percorsi nella via lattea seguono traiettorie ellittiche, mentre solitamente le orbite delle stelle più giovani tendono ad essere più circolari.
Quindi gli astrofisici hanno classificato la maggior parte delle nebulose planetarie come appartenenti alla "Popolazione disco", una via di mezzo appunto tra quelli di Popolazione II (molto vecchi) e Popolazione I (giovani).


A proposito della stella che fu
Torniamo per un attimo alla stella centrale delle nebulose planetarie, e cerchiamo di capire quale tipo di stelle possano poi trasformarsi in stelle centrali circondate da nebulose planetarie.
Gli astronomi studiando la distribuzione nella galassia delle nebulose planetarie sono giunti alla conclusione che le stelle che danno origine a questo fenomeno abbiamo inizialmente una massa di poco superiore a quella del Sole.

Stelle molto massicce e giovani, come abbiamo detto prima, si trovano per lo più sulle spirali e presso il piano galattico, mentre le nebulose planetarie tendono ad essere più prossime al nucleo.
Inoltre, la massa di queste nebulose è di circa 0,3 masse solari, e la massa di una tipica nana bianca (lo stadio finale della stella centrale) è di circa 0,7 masse solari.
Considerando che la velocità di espansione della nebulosa è probabilmente paragonabile alla velocità di fuga dal suo progenitore, gli astrofisici giungono alla conclusione che la stella originaria era una stella gigante rossa: una stella grande e "fresca", con una massa poco superiore al sole.
Questo aspetto è straordinario se pensiamo che queste giganti rosse, dalla temperatura relativamente bassa, diventeranno al termine del processo delle piccole nane bianche caldissime.

Molto probabilmente le stelle candidate a diventare progenitrici di nebulose planetarie sono stelle variabili di lungo periodo. Queste particolari stelle sono note per essere instabili ed hanno dimensione e massa coerente con la teoria evolutiva che hanno descritto gli astronomi.

Sono invece stelle completamente diverse le Novae: stelle che si illuminano enormemente per un breve periodo e che rilasciano un guscio di materiale in modo esplosivo ad una velocità di centinaia di chilometri al secondo.
Potete trovare un approfondimento su questo tipo di fenomeno a questo link: Cosa sono le supernovae?







lunedì 20 novembre 2017

cielo profondo hubble nebulose via lattea

I Nodi cometari

In tutte le nebulose planetarie troviamo i così detti nodi cometari, affascinanti formazioni ricche di misteri con dimensioni che possono raggiungere e superare quelle del sistema solare. In questo articolo scopriamo cosa sono, come si formano e qual'è il loro destino!

Il telescopio spaziale Hubble ha ripreso e reso possibile lo studio di innumerevoli nebulose planetarie, formatesi dopo una morte lenta e poco spettacolare di una stella di dimensioni medie, più o meno come il Sole.
Puoi trovare un approfondimento sulle Nebulose planetarie a questo link: Cosa sono le nebulose planetarie e che segreti nascondono?

Grazie all'Hubble possiamo dire che in tutte le nebulose planetarie troviamo i nodi cometari.
Portano questo nome solamente per la loro somiglianza alle comete del sistema solare: un bulbo dalla quale parte una lunga coda a ventaglio. Rappresentano una caratteristica comune dell'evoluzione delle nebulose planetarie. Tuttavia, a causa delle loro piccole dimensioni, purtroppo possono essere osservati solo nelle nebulose più vicine.


I nodi cometari sono delle zone della nebulosa più dense e polverose dell'area circostante.
La parte di questa zona rivolta verso la stella centrale viene ionizzata (wikipedia.org/wiki/Ionizzazione) e illuminata da essa. Il nodo stesso funge poi da schermatura per le radiazioni provenienti dalla stella che non riescono ad oltrepassarlo, generando gli effetti "coda" che vediamo dietro (rispetto alla stella centrale) di essi.
La testa di un nodo, Il globulo centrale, è almeno 1.000 volte più denso del materiale circostante.
Per capire meglio le loro dimensioni facciamo qualche paragone: essi generalmente sono più grandi del sistema solare convenzionale, cioè dell'orbita di Plutone ed hanno una massa paragonabile a quella della Terra. Possono avere forme più o meno allungate, ed essere disposti in maniera più o meno concentrica rispetto al centro della nebulosa e alla stella centrale.

I nodi cometari sono particolarmente importanti perché probabilmente contengono una frazione significativa della massa totale di materiale espulso dalla stella centrale.
Ciò significa che circa la metà di tutto il materiale espulso è intrappolato in uno stato molecolare più denso del resto e si isola dalle radiazioni ultraviolette provenienti dalla stella. Questa protezione fa sì che il materiale all'interno del nodo non venga coinvolto dai processi di fotoionizzazione (wikipedia.org/wiki/Fotoionizzazione) che determinano le caratteristiche e il destino del materiale ionizzato.

Sembrano formarsi presto nel ciclo di vita delle nebulose planetarie che li ospitano, anche se la loro formazione per noi osservatori coincide in realtà solo con il "momento" in cui diventano visibili. Lo vedremo più avanti.
Gli astronomi hanno due ipotesi per spiegare la variazione di densità dei nodi cometari rispetto al materiale circostante della nebulosa. La prima è che all'origine ci sia un meccanismo di instabilità operante a fronte della ionizzazione della nebulosa. L'altra è che siano dovuti ad una disomogeneità nel gas/plasma della superficie della stella che si sta dissolvendo ed allontanando dal nucleo.

I Nodi cometari non sono tutti uguali ma ne esistono di diverse tipologie.
Ad esempio quelli all'interno della nebulosa elica (NGC 7293) e della nebulosa della Lira (M57 - NGC 6720) si sviluppano lungo percorsi molto simmetrici che si allontanano dalla stella centrale come i raggi di una ruota. In particolare se osserviamo bene i nodi della nebulosa elica ci accorgiamo che la parte del bulbo rivolta verso la stella centrale e molto più chiara e luminosa: zone frontali in cui la ionizzazione è molto maggiore che nelle zone posteriori.
I Nodi della nebulosa Eschimese (NG C2392) sono anch'essi a raggiera ma le code sono più irregolare e i bulbi presentano una ionizzazione minore.
Nella nebulosa Manubrio (Dumbbell Nebula - NGC 6853) invece, sono presenti sia nodi simmetrici che noti con direzioni casuali, e poi ancora nodi con code più o meno regolari e nodi senza code vistose.
E ora una stranezza fuori dal comune: i nodi della nebulosa retina (IC 4406). Questi nodi non presentano nessuna disposizione a raggiera rispetto alla stella centrale. Sono completamente disordinati ed assomigliano ad un ricamo scuro sopra alla nebulosa. Inoltre nessun lato dei bulbi presenta una luminosità maggiore ad indicare una ionizzazione!!

Le caratteristiche dei nodi ci permettono di capire la loro posizione all'interno della nebulosa planetaria che li ospita.
Come abbiamo detto le nebulose planetarie sono gusci di gas che si espandono lentamente allontanandosi dalla stella morente al centro della nebulosa e che pian piano si surriscalda. durante questo processo le radiazioni ultravioletta ionizzano la nebulosa in quantità differente a seconda della distanza dei gas, dando origine alla varietà di nodi visti sopra.
In poche parole i confini di ionizzazione crescano di dimensioni con il tempo, e i nodi che inizialmente sono nascosti alla reazione ionizzante vengono alla luce quando il fronte ionizzante li raggiunge. Quindi i nodi si formano nei pressi o all'esterno del fronte di ionizzazione principale quando la nebulosa è piuttosto giovane, per essere successivamente superati dal crescente fronte di ionizzazione. I fotoni e la ionizzazione iniziano così a scolpire il materiale dei nodi modificandone l'aspetto e la natura delle code.

Se ad esempio un nodo non presenta un bordo luminoso sul lato opposto alla stella centrale, allora questo si trova completamente fuori dal limite ionizzante.
Nel caso della nebulosa retina non ci sono emissioni intorno ai nodi. Ciò indica che i nodi si trovano ancora nella parte neutrale della nebulosa.
Nel caso invece di M57, ci emissioni sulle punte dei nodi che si affacciano sulla stella centrale, ma la maggior parte dei nodi sono neutri: ciò significa che anche loro si trovano ancora principalmente nella zona neutrale della nebulosa ma che il fronte di ionizzazione sta iniziando a lambirli.

Nella nebulosa Manubrio invece si vedono una varietà di illuminazioni. Alcuni nodi sono solo delle sagome scure, ciò indica che si trovano ancora al di fuori della parte frontale della ionizzazione.
Altri invece hanno il bulbo fotoionizzati sul lato rivolto verso la stella centrale, ad indicare che si trovano nella parte ionizzata della nebulosa.
Nella nebulosa eschimese, i nodi hanno tutto il bulbo brillanti, mentre le code sono più scure, indicando una posizione molto prossima al fronte ionizzato.

Il destino dei nodi cometari è ancora oggetto di molti studi.
E' molto probabile che il loro futuro dipenda dalla loro dimensioni e dalla loro massa.
Una conseguenza della loro ionizzazione è che sono costantemente sottoposti ad una lenta fotoevaporazione (https://it.wikipedia.org/wiki/Fotoevaporazione).
La situazione è molto simile a quella dei dischi proto-planetari (proplyds, o ovuli do bok) presenti nelle nebulose diffuse come la nebulosa di Orione (M42), dove il il nucleo molecolare del globulo viene riscaldato dai fotoni, causando un lento flusso di gas lontano dal nucleo.
Quando questo gas raggiunge il fronte di ionizzazione dei nodi viene fotoionizzato e riscaldato, poi viene rapidamente accelerato ad una velocità di circa 10 km/s.
Quindi nel giro di qualche migliaio di anni i nodi cometari probabilmente si dissolveranno a causa della continua sollecitazione ed "evaporeranno".
Ma i più grandi di essi potrebbero sopravvivere a tutto ciò e potrebbero finire con il vagare per la galassia sottoforma di piccoli asterodi.
Infatti se la forza ionizzante della stella centrale si esaurisce prima dell'evaporazione dei nodi più massivi, la nebulosa planetaria pian piano diventa sempre più buia, e la sollecitazione sempre minore.
Questo potrebbe aiutare l'aggregazione gravitazionale delle polveri presenti all'interno del bulbo del nodo, che finirebbero per compattarsi sotto il loro peso. Come risultato avremmo una nebulosa planetaria che si affievolisce sempre di più abbandonando nello spazio interstellare i nodi cometari più massicci che nel frattempo sono diventati piccoli asteroidi.

Nebulosa Dumbell - NGC 6853 


Nebulosa eschimese - NGC 22392


Nebulosa NGC 7293


Nebulosa della Lyra - M57 



Nebulosa IC 4406


venerdì 22 settembre 2017

cielo profondo hubble nebulose via lattea

Cosa dà a questo oggetto una forma e una morfologia così estroversa? La nebulosa mosca è una delle nebulose planetarie più affascinanti del cielo sia per la sua forma ad S che per le circostanze che l'hanno generata.

Grazie alle ultime osservazioni del Southern African Large Telescope alcuni segreti sulla sua morfologia sono stati finalmente svelati.
La nebulosa Mosca, NGC 5189, che vedete in questa immagine è una nebulosa planetaria molto particolare.
Il nome ci spinge ad associare queste nebulose a qualcosa che riguarda in qualche modo pianeti o sistemi planetari.
In realtà non sono niente di tutto ciò, ma il nome deriva solamente dal fatto che la maggior parte di esse hanno un aspetto sferico e osservate con i primi telescopi apparivano simili a dei pianeti.
La maggior parte, ma non tutte, e questa immagine ce lo dimostra con chiarezza.



Ciò che vediamo è quello che resta della morte di una stella che aveva circa le dimensioni del nostro sole.
Al contrario di stelle più massicce che esplodono in supernove, stelle di questa categoria quando terminano il loro combustibile rilasciano lentamente nello spazio circostante i propri strati superficiali in una lenta e silenziosa espansione.
Dobbiamo immaginare questo processo come una esplosione a rallentatore.
Il risultato sono nebulose planetarie composte da gas brillanti, come la nebulosa Mosca.
A volte questa forma è una sfera, a volte un lobo doppio, a volte un anello o un'elica.

Ma cos'ha di particolare la nebulosa Mosca? Analizziamo nel dettaglio l'immagine scattata dall'Hubble, l'immagine più dettagliata che abbiamo di questa nebulosa.

Globi concentrici 
Un particolare che salta subito all'occhio guardando questa immagine è che, al contrario di altre nebulose planetarie, NGC 5189 è formata da due enormi strutture di gas, annidate una nell'altra.
La struttura più esterna ci appare come una anello, mentre quella più interna assomiglia ad una vera e propria bolla.
Nel 2014, gli astronomi dell'Università di Sao Paulo in Brasile hanno studiato la composizione chimica della stella centrale di NGC 5189 e hanno scoperto una quantità di azoto significativamente più alta di quanto atteso paragonando le osservazioni di altre nebulose planetarie.
La presenza delle due grandi "bolle" gassose che costituiscono la nebulosa, unita ad una  maggiore quantità di azoto, portano i cosmologi a pensare che la nana bianca al centro della nebulosa abbia vissuto in realtà due periodi espansione.
In altre parole ha rilasciato il proprio materiale in due fasi separate, e non in una singola perdita di massa come siamo abituati a pensare!

Nodi cometari 
L'anello dorato più esterno, che probabilmente è anche più leggero della bolla interna, è cosparso da un gran numero di filamenti radiali. 
Oltre ai filamenti in questa zona esterna della nebulosa sono presenti numerosissimi nodi cometari.
leggi tutto quello che c'è da sapere sui nodi cometari qui: Cosa sono i nodi cometari?

Queste formazioni hanno origine dall'azione combinata di radiazioni ionizzanti e di venti stellari provenienti dalla stella centrale.
I nodi cometari sono una caratteristica molto comuni nell'evoluzione delle nebulose planetarie, ma possono essere osservati con nitidezza e definizione solamente negli esemplari più vicini a noi.
Si stima che la loro dimensione sia circa quella dell'orbita di Plutone, e che la loro massa complessiva sia paragonabile a quella della Terra.
Un nodo cometario rappresenta la superficie ionizzata" di un batuffolo molecolare circa mille volte più denso e più polveroso della zona limitrofa.
A causa del vento stellare della stella centrale, in queste aree con densità maggiore rispetto al gas circostante si viene a creare una struttura a mezzaluna, che viene illuminata e ionizzata dalla stella centrale.
L'aspetto è simile alla coda di una cometa che si avvicina al sole.

Forma ad S
La spettacolare S che emerge in primo piano nella foto è sicuramente la caratteristica più peculiare ed interessante della nebulosa Mosca.
Come abbiamo visto, quasi sicuramente la morfologia di NGC5189 è legata a rilasci multipli di materiale avvenuti in epoche separate.
Uno di questi rilasci a generato una bolla toroidale (toroidale su Wikipedia) che si sviluppò nel centro della nebulosa e che nel tempo ha subito una enorme distorsione: la S che vediamo nel centro dell'immagine.
Gli astronomi hanno ipotizzato che la causa di quesa distorsione sia da ricercare nel fatto che la stella che ha originato la nebulosa in realtà appartiene ad un sistema binario. La distorsione della sarebbe quindi causata dai disturbi gravitazionali della compagna.
Questa ipotesi è stata confermata durante le ultime osservazioni dell'oggetto fatte usando il Southern African Large Telescope.
Le osservazioni hanno trovato una piccola compagna che orbita intorno alla stella che ha generato la nebulosa con un periodo di 4 giorni.

Da questo Link è possibile scaricare la foto della nebulosa più ad alta risoluzione scattata dal telescopio Hubble.



Costellazione:Mosca
Ascensione retta:13h 33m 32,97s
Declinazione:-65° 58′ 26,7″
Magnitudine:10
Dimensione apparente:90'' x 62''
Distanza:3.000 a.l.
Velocità di avvicinamento:9,5 km/s

lunedì 8 maggio 2017

nebulose oggetti Messier supernovae via lattea

M1, la nebulosa del granchio (NGC 1952), è l'esempio più noto di ciò che rimane dopo l'esplosione di una supernova: una grande e colorata nube di gas pesanti con al centro una pulsar (stella di neutroni).
Scopri in questo articolo cosa sono le supernovae e perchè hanno giocato un ruolo importantissimo nello sviluppo della vita dell'uomo

M1 ha una magnitudine relativa di 8.4 e non è quindi visibile né ad occhio nudo né con un binocolo.
La supernova che la generò invece si fece vedere eccome: esplosa "pochissimo tempo fa", nel 1054 d.c., raggiunse una magnitudine di -6: circa 4 volte più luminosa del pianeta Venere. Fu visibile per ben 23 giorni anche con la luce del giorno e per 653 giorni (2 anni) ad occhio nudo nel cielo notturno.

La nebulosa del granchio dista da noi 6.300 anni luce.
Attualmente la sua dimensione reale è di 10 anni luce ma i gas e le polveri che la costituiscono, i resti dell'esplosione della supernova, si stanno allontanando dal centro a velocità incredibili espandendola di 4.8 milioni di km/h.
Ancora qualche migliaio di anni e probabilmente i gas saranno talmente rarefatti da sfigurare la nebulosa fino a non renderla più visibile.
La pulsar al suo centro (NP0532), ciò che resta della supernova, ruota alla velocità vertiginosa di 30 volte al secondo, e nonostante abbia un diametro di soltanto qualche decina di chilometri, produce un'energia 100.000 volte maggiore di quella del sole.
Coordinate:Ascensione retta 5h 34m 32s | Declinazione +22° 0′ 52″
Distanza dalla terra:6.300 anni luce
Dimensione apparente6' x 4' (quansi un quarto della luna)
Velocità di espansione1.500 km al secondo | 4,8 milioni di km all'ora
Dimensione reale10 anni luce (12mila volte la distanza terra-plutone)
Magnitudine apparente8,4
Magnitudine assoluta-3,1
Dimensione della pulsar10 km
Massa della pulsarda 1,5 a 2 masse solari
Velocità di rotazione della pulsar30 volte al secondo

M1 E' sicuramente una delle più belle e suggestive nebulose della nostra galassia.
Qualcosa di simile a quello che vediamo là, a 6.000 anni luce di distanza, è successo anche nei pressi della nube primordiale in cui nacque il nostro sistema solare.
Si pensa infatti che una supernova abbia influenzato la nube primordiale dalla quale nacque il sole con le sue forti forze mareali e i materiali che compongono il nostro pianeta lo dimostrano.
E' probabile che quindi molte stelle di seconda o terza generazione si stiano formando anche in M1, altri soli, altre terre, altra vita.
Ancora una volta abbiamo sotto gli occhi una dimostrazione di quanto la violenza dell'universo possa generare oggetti magnifici.

Ma cosa vediamo quando guardiamo una la classica foto di M1 come quella in copertina di questo articolo?
I filamenti arancioni sono i brandelli espulsi dalla stella e consistono principalmente in idrogeno.
La stella di neutroni a rapida rotazione presente nel centro della nebulosa invece è il faro che alimenta il brillante bagliore bluastro della nebulosa: la luce blu proviene dagli elettroni della nebulosa che ruotano quasi alla velocità della luce intorno alle linee del forte campo magnetico della pulsar.
La pulsar, con il suo nucleo ultra-denso, a causa della sua elevatissima rotazione espelle due fasci di radiazioni ad impulsi di 30 volte al secondo.
I colori dell'immagine indicano i diversi elementi espulsi durante l'esplosione. L'azzurro nei filamenti nella parte esterna della nebulosa rappresenta l'ossigeno neutro, il verde è zolfo ionizzato e il rosso indica ossigeno ionizzato.



La spettacolare immagine qui sopra, uscita proprio in questi giorni su NASA APOD, è stata assemblata da immagini riprese dai telescopi spaziali Chandra (raggi-xin viola) XMM-Newton (ultravioletti, in blu), Hubble (visibile, in verde) e Spitzer (infrarossi, in giallo).
La sua spettacolarità sta nel fatto che nel livello infrarossi è perfettamente visibile la potente pulsar (ex-supernova) presente al centro della nebulosa e l'energia che ne deriva sottoforma di vortici dovuti alla velocissima rotazione



Nella foto sopra invece, meno tradizionale e ottenuta dal Telescopio Spitzer Spitzer, mostra una vista a infrarossi di questo oggetto complesso.
La regione blu-bianca traccia la nube di elettroni energici intrappolati all'interno del campo magnetico della stella, emettendo la cosiddetta radiazione "sincrotrone"
Le caratteristiche rosse invece seguono lestrutture filamentose che permeano questa nebulosa.



Nel 2011 Il telescopio LAT dedicato alla rilevazione dei raggi cosmici ha rilevato un raggio gamma proprio nel centro di M1. (immagine sopra).
Queste immagini mostrano il raggio gamma che avuto un'energia superiore a 100 milioni di volt. Entrambe le foto sono state pulite dalle emissioni della pulsar.
A sinistra, la regione 20 giorni prima del raggio gamma, a destra invece 2 giorni dopo.
Curiosità storica: La nebulosa del granchio fu il primo oggetto ad entrare nel catalogo Messier perchè era stata da lui confusa con la cometa di Halley, ma ad onor del vero pochi sanno che in realtà fu scoperta 20 anni prima dall'astronomo John Bevis.

martedì 4 febbraio 2014

nebulose stelle via lattea



Questa suggestiva immagine catturata dal telescopio Hubble, rivela una stella nelle sue prime fasi di formazione all'interno della nebulosa Chamaeleon.
La giovane stella sta espellendo flussi di gas dai suoi poli. Questi getti stanno dando orgigine a questo oggetto conosciuto come HH 909A.
I flussi che fuoriescono dai poli della proto-stella sono molto veloci ma si scontrano con il gas più lento circostante illuminando l'intera regione nel modo spettacolare che vediamo nella foto.

In questa fase la stella in realtà non è ancora nata. Quando una stella sta per formarsi, la proto-stella nascente divora avidamente il materiale dalla nebulosa che la circonda e che ha dato il via al processo di formazione stellare.
Quindi una giovane proto-stella continua ad alimentare il suo enorme appetito, attirando a se materia e gas, fino a quando diventerà abbastanza massiccia da innescare le reazioni di fusione nucleare nel suo nucleo, e cioè a nascere, illumineranno la stella nascitura.
Prima che questo accada, le proto-stelle attraversano una fase durante la quale espellono violentemente materiale nello spazio.
Questo materiale viene espulso sotto forma di getti che irrompono nello spazio intorno ad esse a velocità di centinaia di chilometri al secondo e quando questi si scontrano con i gas e la polvere circostante illuminano la regione.

Il risultato sono questo tipo di nebulose a emissione conosciute come oggetti Herbig - Haro. 

Questi oggetti nebulari sono spettacolari sia per la realtà che rappresentano e sia per la vita brevissima che hanno.
Infatti, possono evolversi e cambiare nel giro di pochi anni ( come sta accadendo per la nebulosa heic1113 ) - appena un battito di ciglia in tempi astronomici .

Nell'immagine qui sotto vediamo l'evoluzione di un altro oggetto di questo tipo, la nebulosa HH47, i cui cambiamenti sono stati ripresi in un arco di 5 anni!!



Queste strutture sono molto comuni nelle regioni di formazione stellare, come la Nebulosa di Orione, o la nube molecolare Chameleon I  che si trova nella costellazione meridionale di Chameleon, a poco più di 500 anni luce dalla Terra.

Gli astronomi hanno trovato numerosi oggetti di Herbig - Haro incorporati in questa culla stellare, la maggior parte dei quali proveniente da stelle con massa simile a quella del sole. Si pensa che alcune siano legate a oggetti meno massicci come le nane brune, che sono stelle "fallite" in quanto non hanno raggiunto la massa critica per innescare le reazioni nei loro centri .

Clicca sulle immagini per ingrandirle