domenica 18 novembre 2018

stelle stelle di neutroni supernovae via lattea
Stelle estremamente massicce, esplosioni visibili a milioni di anni luce, e poi? carcasse cosmiche che sfidano le leggi della materia. Ecco cosa sono le stelle di neutroni e come diventano pulsar.

Le stelle di neutroni sono in realtà stelle morte. Carcasse che sfidano le leggi della materia.
Si formano quando una stella massiccia collassa per poi esplodere in un supernova. Durante il collasso che avviene subito prima dell'esplosione, la pressione alla quale è sottoposta la materia è così immensa che i protoni e gli elettroni si schiacciano e si fondono, trasformandosi in neutroni.
Ovviamente l'energia rilasciata da questo fenomeno è altissima, ed è per questo che le supernove sono fenomeni potentissimi e luminosissimi.
Loading...
Per fare un passo in dietro e capire passo passo come esplode una supernova, vi invitiamo a leggere: Come nascono le supernove e perché sono così importanti per l'uomo
Le stelle di neutroni risultanti da questo collasso sono gli oggetti più densi conosciuti, dopo i buchi neri ovviamente.
Sono stelle con la massa di un Sole, ma compressa fino alle dimensioni di una città.
Qui iniziano le frasi fatte che sicuramente avrete già letto in giro su internet: hanno un diametro di circa 20 chilometri, un cucchiaio del loro materiale peserebbe tanto quanto una montagna e la gravità sulla superficie è circa 2 miliardi di volte più forte della gravità sulla Terra. E anche il campo magnetico non scherza, è milioni di volte più forte di quello del Sole.

Detto questo, come è fatta veramente una stella di neutroni?
Se potessimo affettare una stella di neutroni ci accorgeremmo che non é per niente omogenea, o per lo meno questa è la teoria.
Le stelle di neutroni sono fatte da una crosta e da un nucleo.
La crosta è composta da da uno strato esterno di poche centinaia di metri, composta da un miscuglio molto compatto di nuclei atomici (protoni e neutroni) ed elettroni liberi, cioè elettroni che si muovono indipendentemente e non sono legati al nucleo di un atomo.
La densità qui è talmente alta che non si può più parlare di atomi. In un centimetro cubo di questo strato di crosta si trova una tonnellata di materia.

Sotto a questo strato troviamo la crosta interna, spessa circa un paio di chilometri e più densa dello strato sopra.
Nella crosta interna oltre agli elettroni liberi iniziamo a trovare anche neutroni liberi.

Scendendo ancora più verso l'interno troviamo il nucleo.
Questa zona è il cuore della stella di neutroni ed ha un diametro di circa 10 / 13 km.
La parte esterna del nucleo di una stella di neutroni è molto probabilmente liquido. Qui la pressione alla quale è sottoposta la materia è davvero altissima ed è proprio qua che i neutroni prendono la scena: più del 90% del nucleo esterno è composto da neutroni.
Gli atomi come li conosciamo non riescono più a resistere. Nemmeno i loro nuclei mantengono più le caratteristiche atomiche alla quale siamo abituati.
In questa sfera liquida di circa 10 km di diametro esistono quasi solamente neutroni!

Ma non è finita qua.
Superati i primi 10 km di profondità all'interno del nucleo, e cioè negli ultimi 2 / 3 km, la pressione e la forza di gravità sono talmente alte che gli astrofisici fanno davvero fatica a capire in che stato possa essere la materia.
Questo punto delimita l'inizio del nucleo interno della stella di neutroni.
Qui le particelle elementari si comportano in modo imprevedibile. Il nucleo interno delle stelle di neutroni è il punto più denso dell'universo osservabile. La densità raggiunge probabilmente valori di circa un miliardo di tonnellate per centimetro cubo!
La maggior parte dei fisici concorda sul fatto che nel cuore delle stelle di neutroni ci sia il plasma di quark e gluoni.
Questo brodo di particelle subatomiche può esistere solo a temperature o densità altissime.
Nei primi millisecondi dopo il Big Bang l'universo era talmente caldo da essere permeato di questo plasma. Situazione che è andata via via raffreddandosi creando i primi atomi.
Nel nucleo più interno delle stelle di neutroni potrebbe esserci abbastanza pressione da creare lo stesso plasma!

Cosa centra tutto ciò con le pulsar?
Le pulsar altro non sono che stelle di neutroni con un piano rotatorio molto particolare.
Tutte le stelle di neutroni sono in realtà anche delle pulsar. Ma ciò che le fa diventare pulsar ai nostri occhi è l'inclinazione del loro asse rispetto al nostro punto di osservazione.

Ma ci manca un aspetto essenziale.
Abbiamo detto prima che una stella di neutroni deriva da una stella molto grande, il cui diametro è di qualche milione di chilometri.
Dopo l'esplosione ed il collasso, la stella di neutroni risultante mantiene il momento angolare della sua progenitrice. Peccato però che il suo diametro sia passato da qualche milione di chilometri a poco più di 10.
Questo ha un'effetto potentissimo sulla sua velocità di rotazione che può raggiungere i 700 giri al secondo o più.

Per comprendere meglio questo fenomeno vi invitiamo a guardare questo simpatico video su youtube: il momento angolare

E' semplice intuire quanta energia possa avere un oggetto che ruota così velocemente.
Una parte di questa enorme energia viene rilascia attraverso il forte campo magnetico che avvolge la stella. E il risultato è un fascio costante e potente di energia che viene espulso dai poli del campo magnetico della stella di neutroni.
Benissimo, proprio questo fascio rende le stelle di neutroni anche delle pulsar.
In base all'inclinazione che ha l'asse di rotazione della stella di neutroni ed alla sua velocità, il fascio avrà per noi sulla Terra una intermittenza diversa.
Il video sotto aiuta a comprendere il fenomeno.



Considerata la velocità con la quale ruotano le stelle di neutroni, potete farvi un'idea di quanto velocemente possa "lampeggiare" una pulsar.
Ci sono pulsar che emettono impulsi 1 volta al secondo. Altre, 30 volte al secondo e così via fino ad arrivare a pulsar che emettono impulsi a centinaia di volte al secondo.

Qui sotto vi facciamo ascoltare alcune straordinarie registrazioni fatte dai radiotelescopi.

Ma questa rotazione è destinata piano piano a rallentare. E' un serpente che si morde la coda, più la stella ruota velocemente e più energia disperde. Più energia disperde e prima terminerà la sua rotazione. Si parla comunque di decine milioni di anni.
Un'altra causa che determina il rallentamento di una pulsar è legata al suo raffreddamento.
Mentre una stella di neutroni si raffredda, il suo interno inizia a diventare sempre più "superfluido".
Il superfluido è uno stato della materia che si comporta come un fluido, ma senza l'attrito o la "viscosità" del fluido.
Anche questo cambiamento di stato influenza gradualmente il modo in cui la rotazione della stella rallenta.

Le pulsar sono oggetti straordinari, fari cosmici con ritmi secolari. Oggi ne conosciamo più di 2.000 ed il numero cresce sempre di più. Sono un esempio di quanto l'universo possa stupirci con le sue straordinarie stranezze.
Pulsar PSR B0329+54. Questa è una pulsar classica che pulsa con un periodo di 0,7 secondi ascolta
Pulsar PSR B0833-45. Questa pulsar si trova al centro della nebuloso Vela. Costituita dai detriti dell'esplosione di circa 10.000 anni fa. Questa pulsar ha un periodo di 89 millisecondi e ruota 11 volte al secondo.ascolta
Pulsar PSR B0531 + 21. E' sicuramente la pulsar più famosa perché si trova al centro della nebulosa del granchio: M1. Ruota circa 30 volte al secondo.ascolta
Pulsar PSR J0437-4715. Questa è una pulsar millisecondo che ruota circa 174 volte al secondo.ascolta
Pulsar PSR B1937 + 21. E' la pulsar più veloce conosciuta. Ruota con un periodo di 0,00155780644887275 secondi, cioè o circa 642 volte al secondo. La superficie di questa stella si muove a circa 1/7 della velocità della luce e illustra le enormi forze gravitazionali che impediscono il suo allontanarsi a causa delle immense forze centrifughe.ascolta

domenica 4 novembre 2018

galassie stelle via lattea

La seconda vita della Via Lattea


Oggi, dopo 13,5 miliardi di anni dalla sua nascita, la Via Lattea sta vivendo la sua seconda giovinezza. Dopo un periodo in cui il tasso di formazione stellare è stata molto limitato, la Via Lattea ha iniziato una seconda vita, riprendendo la formare di stelle.

La Via Lattea è la nostra galassia. In questo sito abbiamo parlati di come la vediamo, di come è fatta, di quanto "pesa" e di molti altri suoi aspetti.
Scopri qui tutti questi approfondimenti: La Via Lattea
Oggi aggiungiamo un altro tassello a questo disegno che riprende la nostra galassia in tutto il suo splendore: la sua seconda vita.
Secondo le ultime ricerche infatti, oggi stiamo vivendo in una seconda vita per la Via Lattea.

Ma iniziamo dall'inizio.
Loading...
La Via Lattea è una galassia molto vecchia: con i suoi 13,51 miliardi di anni si è formata assieme alle prime galassie dell'universo.
Ha quindi avuto tutto il tempo per evolversi e diventare come gli astrofisici ce la descrivono oggi: una galassia a spirale barrata.
Quello che vediamo oggi, e che vediamo in moltissime altre galassie simili, è il risultato della formazione di miliardi di stelle, nate dall'enorme bolla di gas che costituiva l'embrione primordiale della Via Lattea.
Le innumerevoli stelle che vediamo nel cielo, la striscia bianca che solca i cieli estivi, le splendide nebulose che vediamo nelle foto di Hubble, gli ammassi globulari e quelli aperti: proviene tutto da una delle tante sacche di gas nate dal Big Bang e dell'inflazione.

Le onde d'urto generate dalle prime esplosioni di supernove, che all'inizio della vita della Via Lattea erano numerose, hanno sicuramente aiutato l'intensa formazione stellare dei primi anni (miliardi) della nostra galassia.
Un altro fattore che ha aiutato la formazione delle stelle che vediamo oggi è sicuramente stato lo scontro con piccole galassie satelliti primordiali. Queste piccole galassie hanno creato delle "maree" nei gas della Via Lattea, comprimendoli e innescando le scintille per la formazione di altre stelle.
Tutto questo ha costituito un'era molto frizzante per la nostra galassia.

Oggi gli astrofisici sono abbastanza sicuri che dopo questa era di estrema attività, ci sia stato un periodo dormiente durato due miliardi di anni in cui il tasso di formazione stellare è diminuito notevolmente.

Ora però la tendenza sembra essersi di nuovo invertita e il tasso di formazione stellare è di nuovo in aumento. Praticamente nella Via Lattea stanno ancora nascendo centinaia di milioni di stelle, impedendo alla nostra galassia di diventare sempre più buia e di trasformarsi in un bacino di stelle vecchie e morenti.

Ma cosa si nasconde dietro a questa variazione del tasso di formazione stellare?
La risposta si annida in un fenomeno galattico chiamato "accrescimento da flusso freddo" e nel concetto si "sviluppo galattico a due stadi".

In breve lo scenario è questo.
Tra le galassie troviamo i così detti filamenti galattici: enormi nubi di gas ad alta temperatura, residui ancora immacolati della materia formatasi dopo il big bang e l'inflazione. I margini di questi enormi filamenti sono più freddi rispetto alle altre zone e riescono a penetrare nelle galassie.
Trovi un approfondimento molto interessante sui filamenti galattici a questo link.
Questo flusso freddo non costituisce solo carburante per nuove stelle, ma con l'attrito e la pressione che genera sui gas che già si trovano nella galassia, danno il via all'addensamento necessario ad accendere la formazione stellare.

A questo punto entra in gioco lo sviluppo a due stadi.
Le stelle che popolano le galassie molto giovani sono stelle molto grosse, molto luminose e molto energetiche.
Queste tipo di stelle purtroppo hanno una vita molto breve ed una more violenta: diventano supernovae.
Quando all'interno di una galassia molto giovane le stelle iniziano ad esplodere in supernove, lo shock e le onde d'urto scaldano i gas galattici circostanti bloccando il flusso freddo in entrata.

Ecco che a questo punto la formazione stellare diminuisce drasticamente e la galassia entra in uno stato "dormiente".
In alcuni casi questo periodo segna l'inizio della morte della galassia, i cui gas non riescono più ad accendere stelle e quindi si spengono pian piano diventando galassie oscure.
Ma nella maggior parte dei casi, come è successo alla Via Lattea, questa fase termina quando diminuiscono le esplosioni di supernovae.
A questo punto il gas freddo presente nei bordi dei filamenti ricomincia a fluire dentro la galassia dando il via a nuove formazioni stellari dalle ceneri delle supernovae esplose. Ecco che ha inizio un secondo stadio evolutivo.

E, come diciamo dall'inizio di questo articolo, anche la Via Lattea sta vivendo questa seconda vita.
La storia della Via Lattea può essere analizzata osservando le composizioni elementali delle sue stelle, che sono il risultato della composizione del gas da cui sono formate.
Osservando le stelle della Via Lattea, ci si accorge che possono essere divise in due gruppi con composizioni chimiche diverse.
Un gruppo è costituito da stelle ricche di elementi come ossigeno, magnesio e silicio, detti anche elementi alfa.
Mentre nell'altro gruppo c'è una grande abbondanza di ferro.

Ecco quindi dimostrato che la Via Lattea è nata quando i flussi di gas freddo si sono intensificati verso quello che era la nostra proto galassia, portando alla formazione della prima generazione di stelle.
Questo gas conteneva elementi alfa, prodotti anche da supernova di tipo II: Stelle molto massicce, nate ai primordi dell'universo, che al termine della loro breve ma intensa vita subiscono un collasso del nucleo per poi esplodere rilasciando questi elementi nel mezzo intergalattico.
Questo ha portato alla prima generazione di stelle ricche di elementi alfa.

Poi, circa 7 miliardi di anni fa, la formazione stellare ha subito uno stop, fino a circa 5 miliardi di anni fa, quando hanno iniziato ad apparire un alto numero di supernove di tipo 1A, causate da sistemi binari in cui una nana bianca attira a se il materiale dal suo compagno.
Queste esplosioni hanno iniettato il ferro nel gas intergalattico e ne hanno modificato la composizione elementare.
Nel corso del tempo, questo gas intergalattico ha iniziato a raffreddarsi e ha iniziato a rifluire all'interno della galassia portando alla formazione di una seconda generazione di stelle.
Il Sole stesso, è ricco di ferro ed appartiene a questa generazione di stelle.
Puoi approfondire in dettaglio cosa porta all'esplosione di supernove in questo nostro approfondimento: Cosa sono le supernove e perché sono così importanti per l'uomo



venerdì 14 settembre 2018

buchi neri via lattea

Nel centro della nostra galassia ci sono probabilmente centinaia di piccoli buchi neri. E' la prima volta che, anche se in maniera indiretta, vediamo nell'universo una "bolla" di buchi neri così relativamente vicini. La foto qui sopra è il risultato di una selezione fatta usando il telescopio spaziale della NASA Chandra che sta osservando, tra le altre cose, il cuore della Via Lattea.

Sono buchi neri dal raggio molto piccolo, ma che hanno una massa che va dalle 5 alle 30 volte quella del Sole. Ed proprio questo rapporto tra massa e dimensione a renderli così potenti.

Non si parla quindi di buchi neri super massicci come quello al centro della galassia, ma di piccolissimi buchi neri di massa stellare.

Il gruppo di buchi neri che si troverebbe nei pressi del centro della Via Lattea conterebbe decine di esemplari sparsi in una bolla dal diametro di circa tre anni luce attorno al famoso buco nero supermassiccio che si trova nel cuore: Sagittario A* (Sgr A*).
La presenza di questa popolazione di buchi neri è anche confermata dai sistemi di simulazione sui movimenti delle stelle all'interno delle galassie a spirale, eseguita sui dati raccolti dal telescopio Chandra.
Queste simulazioni mettono in evidenza che durante la vita della galassia, un numero che potrebbe arrivare fino 20.000 unità di buchi neri di massa stellare, si raccoglierebbe vicino al nucleo della galassia stessa.
Potete scoprire come è fatto realmente un buco nero in questo approfondimento: Come sono fatti i buchi neri?

Ma come facciamo ad essere così sicuri che ci siano tutti questi buchi neri vicino al nucleo della Via Lattea?

Un buco nero, da solo, è invisibile.
Tuttavia, i buchi neri di piccole dimensioni come quelli in questione, spesso sono nati da processi simili alle supernove 1a, e quindi hanno un così detto "compagno orbitale".
per capire meglio le supernovae 1A e questo tipo di buchi neri potete leggere questo approfondimento: Cosa sono le supernovae?

Quindi, un buco in coppia binaria con un'altra stella, attira a sè il gas dalla sua compagna, e lo fa ad una velocità straordinaria!
Questo materiale, mentre cade ad altissima velocità nelle fauci del buco nero, acquisisce una temperatura che arriva a milioni di gradi e il suo percorso attorno al buco nero assume una forma a disco.
Tutto ciò produce una forte emissione di raggi X. Da qui anche il nome di "binari a raggi X".

Nell'immagine del centro della Via Lattea che vedete qui sopra, i pallini rossi localizzano questo tipo di buchi neri.
Sono tutti localizzati in un'area di circa 12 anni luce attorno a Sgr A*
I pallini gialli invece rappresentano sorgenti a raggi X simili ai buchi neri binari, ma che però hanno origine da sistemi che ospitano al centro stelle nane bianche. Queste stelle potrebbero presto dare luce a delle supernovae di tipo 1A.

Dopo le osservazioni sulla variabilità delle emissioni di raggi X gli astronomi sono abbastanza sicuri che gli oggetti identificati dai puntini rossi siano dei buchi neri binari ed escludono che siano sistemi binari costituite da stelle di neutroni. Anche se esistono probabilità che questi oggetti siano in realtà "Pulsar millisecondi" e che il loro tempo di rotazione sia talmente veloce da non riuscire ad essere percepito dai nostri radiotelescopi odierni.

Poiché alle distanze di cui stiamo parlando possono essere osservate soltanto le sorgenti a raggi X più brillanti, le ipotesi degli astrofisici si spingono a stimare che in realtà la popolazione di buchi neri della zona non rilevato sia molto più alta. Inizialmente gli astrofisici pensavano che intorno a Sgr A* potesse esserci una popolazione da 300 ao 900 esemplari. Oggi si stima che in realtà ci siano qualcosa come 10-40 mila buchi neri di massa stellare!

Questa enorme popolazione di buchi neri accompagnati da stelle potrebbe fornire informazioni importanti sulla formazione dei sistemi binari di questo tipo che, a quanto pare, non sono poi così rari.
Costellazione:Perseo
Ascensione retta:03h 19m 48,2s
Declinazione:+41° 30′ 42″
Magnitudine:11,9
Dimensione apparente:2,2' x 1,7'
Distanza:235 milioni a.l.

lunedì 27 agosto 2018

esplorazione Pianeti extrasolari via lattea
L'acqua non è così rara nell'universo. La nostra galassia, la Via Lattea, è straordinariamente piena di pianeti extra-solari ricchissimi di acqua.

I pianeti alieni di medie dimensioni, diciamo da due a quattro volte più grandi della Terra, tendono a ospitare enormi quantità di acqua.
Alcuni di questi mondi extra-solari hanno talmente tanta acqua che la loro massa è composta fino al 50% di acqua.
Per fare un esempio, la maggior parte della superficie del nostro pianeta è ricoperta di acqua, ciò nonostante la massa dell'acqua è solo dello 0,02% dell'intero pianeta.
Ora possiamo renderci conto di quanta acqua ci sia su alcuni pianeti extra-solari.

I dati raccolti dai programmi osservativi indicano che circa il 35% degli esopianeti conosciuti più grandi della Terra sono ricchi di acqua.
Questa affermazione si bassa su un modello che mette in relazione la massa dei pianeti e il loro raggio.
Questo modello mette in evidenza che i pianeti extra-solari con una dimensione di circa 1,5 volte la dimensione della Terra, o più piccoli, tendono ad essere rocciosi. Pianeti più grandi invece tendono ad essere più acquatici.
Anche nel sistema solare i pianeti più grossi della Terra sono principalmente gassosi.

I pianeti di questo tipo osservati fino ad ora, sono più vicini alla loro stella di quanto non lo sia la terra al Sole. Questo fa in modo che la loro temperatura superficiale si aggiri nell'intervallo da 200°C a 500°C.
La loro superficie liquida quindi potrebbe essere avvolta da un'atmosfera costituita principalmente da vapore acqueo, con uno strato di acqua liquida al di sotto.
Sotto alla superficie liquida invece l'acqua si troverebbe compressa da una pressione e da una gravità molto più alta di quella sul nostro pianeta, dovuta alle dimensioni più ampie del pianeta rispetto alla Terra.
Questa enorme compressione genera un particolare tipo di ghiaccio, sotto alla quale ci sarebbe il vero e proprio nucleo solido.
Il pianeta extra-solare Glise 436b è un esempio molto chiaro di quanto illustrato da questo modello.
Abbiamo parlato di questo fenomeno in modo dettagliato qui: Glise 436b: un pianeta che brucia il ghiaccio

La conferma di quanto questo modello sia valido la avremo con le osservazioni che farà il Il Transite Exoplanet Survey Satellite (TESS) della NASA, lanciato pochi mesi fa, che probabilmente troverà molti di questi mondi acquatici.

martedì 31 luglio 2018

nebulose stelle supernovae via lattea

Distante 24.000 anni luce dalla terra, Cygnus X-3 è una delle più potenti sorgenti binarie di raggi-x del cielo.

Inizialmente gli astrofisici classificarono questo oggetto etichettandolo come micro-quasar.
Oggi invece sappiamo che si tratta di un sistema binario molto strano, ma non altrettanto raro.
Stiamo parlando di una stella molto grande, probabilmente una stella di Wolf-Rayet intorno alla quale ne sta orbitando una molto piccola ma estremamente massiccia: quasi sicuramente una stella di neutroni o, forse, un buco nero.
Pensate, questa stella di neutroni orbita attorno alla stella gigante in un periodo di appena 5 ore, detenendo così il primato di coppia binaria più veloce!
La potenza di questa coppia risiede come sappiamo nel fatto che la stella di neutroni, con la sua massa estrema sta pian piano divorando la superficie della compagna gigante.

Questo fenomeno genera una fortissima emissione di raggi-x e, nel lungo periodo, darà sicuramente luogo ad una fortissima esplosione di supernova: una supernova di tipo 1A.
Se pensiamo che anche la stella di neutroni della coppia si è formata molto probabilmente da una esplosione di supernova, ci accorgiamo che ci troveremo davanti ad un doppio evento di supernova.
Potete approfondire qui come si formano le supernovae: Come nascono le supernovae

Ma non è tutto, Cygnus X-3 è molto interessante anche come sorgente di raggi gamma, infrarossi e di onde radio.
E' una delle poche fonti di raggi cosmici ad altissima energia della nostra galassia. Più di una volta ha dato vita ad anomale ed insolite emissioni di raggi gamma che anno messo in discussione la sua origine, accendendo teorie secondo la quale la stella orbitante potrebbe non essere una stella di neutroni ma addirittura una esotica stella di quark!

Ma questo Mostro stellare non si è distinto solamente per le sue intense emissioni di raggi cosmici e raggi-x. Nel 1972 ad esempio, Cygnus X-3 ha dato spettacolo anche come emittente radio con una esplosione che ha aumentato l'emissione radioelettrica di mille volte rispetto alla sua media.
Ancora oggi non sappiamo dare una risposta a questa violentissima raffica di emissioni radio, ma da quella prima volta Cygnus X-3 ha iniziato ad avere esplosioni radio minori con una cadenza precisa di 367 giorni! Sappiamo che la velocità dell'onda d'urto di queste esplosioni è pari ad un terzo della velocità della luce!

Come avrete capito, stiamo parlando di un vero e proprio mostro celeste, un oggetto che emette radiazioni fortissime e con elevata velocità. E nei cui pressi la distorsione spazio-temporale è davvero forte.

Eppure, nei dintorni di questo oggetto a poche migliai di anni luce di distanza, sta nascendo un nuovo sistema Stellare.
E' stata infatti osservata una emissioni di raggi-x aggiuntiva, molto vicina a Cygnus X-3. Talmente vicina da essere stata confusa con una emissioni minore proveniente da Cygnus X-3.

Si tratta di una piccola nube oscura dal diametro di poco inferiore ad un anno lune. Questa nube si comporta come un piccolo specchio che riflette verso la terra alcuni raggi-x provenienti dalla vicina Cygnus X-3. Da qui il simpatico nome: "Il piccolo amico di Cygnus X-3"

Le osservazioni indicano che la massa di questa nube varia, in maniera molto imprecisa, tra 2 e 24 volte quella del Sole. All'interno, le osservazioni spettroscopiche hanno rilevato la presenza di monossido di carbonio.
Tutti questi indizi fanno pensare che si tratti di un globulo di bok. Questo significa che stiamo assistendo alla nascita di una stella e un conseguente sistema planetario a pochi anni luce da un mortale generatore di radiazioni cosmiche quale è Cygnus X-3!
A confermare la genesi di un sistema proto-planetario c'è anche la presenza di un getto energetico dall'interno del Piccolo Amico, una chiara indicazione che nei meandri del globulo di bok, una stella abbia già iniziato a formarsi.
Potete scoprire tutto quello che c'è da sapere sui globulo di bock qui: Cosa sono i globuli di bok?

Il piccolo amico di Cygnus X-3 offre un punto di vista completamente nuovo per lo studio di questi embrioni proto-planetari.
Solitamente studiamo i globuli di bok analizzando la luce che assorbono, oppure le deboli emissioni radio che producono. In questo caso invece possiamo studiare il bozzolo planetario sfruttando la riflessione dei raggi-x. Se ci aggiungiamo il fatto che con i suoi 20.000 anni luce di distanza è il globulo di bok più lontano osservato, be la cosa diventa davvero interessante!

Ma come facciamo a sapere la distanza di questo globulo di bok?
E' molto semplice, come abbiamo detto all'inizio, Cygnus X-3 dista dalla terra 24.000 anni luce, ed emette un fascio di raggi-x con una periodicità regolare di 5 ore. Quindi anche i raggi-x riflessi dal piccolo amico verso di noi hanno una regolarità di 5 ore, ma sono leggermente ritardati a causa della sua differente posizione.
E' proprio questo ritardo ad averci aiutato a calcolare con precisione la sua distanza.

La scoperta e la posizione del piccolo amico da delle conferme ad una teoria secondo la quale il sistema binario Cygnus X-3 non sia nato li dove lo vediamo adesso.
La teoria pone le sue radici nel fatto che una delle due componenti del sistema binario è una stella di Wolf-Rayet: una stella molto massiccia la cui vita è molto breve. Quindi essendo ancora nel pieno della sua esistenza la sua nascita non è molto lontana nel passato.
Ma questo tipo di stelle, di fatto molto giovani, si trovano nelle braccia a spirare delle galassie e della Via Lattea. Dove è presente ancora molto gas primordiale, in attesa della scintilla che dia origine alla nascita di stelle. Ma Cygnus X-3 si trova fuori dai bracci.

La spiegazione teorica che giustificherebbe questa presenza fuori luogo è che l'esplosione di supernova che ha dato origine alla stella di neutroni (o al buco nero) che ruota attorno alla stella di Wolf-Rayet sia avvenuta in realtà nel braccio vicino della Via Lattea, dove ad una distanza di 4.000 anni luce si trova anche "il piccolo amico", e sia stata talmente violenta da allontanare il sistema binario dal luogo iniziale, quella in cui si trova ancora oggi il globulo di bok. Ciò non significa che la stella di Wokf-Rayet sia nata dal "piccolo amico", ma che entrambe potrebbero essere nati da una stessa antica nube molecolare gigante di cui il globulo di bok ne è un rimasuglio.

Supponendo che Cygnus X-3 e il Piccolo Amico si siano formati, seppure indipendentemente, uno vicino all'altro, Cygnus X-3 dovrebbe essere stato gettato via ad una velocità comprese tra i 180 e 900 chilometri al secondo!

La prossima volta che guarderete la costellazione estiva del Cigno, pensate che vicino alla stella che unisce le ali al corpo, quella sotto Deneb, la stella che rappresenta la coda del Cigno, li vicino si trova questa stella di Wolf-Rayet intorno alla quale ruota o una stella di neutrini (o un buco nero) emettendo una altissima quantità di raggi-x, e il piccolo amico.
Costellazione:Cigno
Ascensione retta:20h 32m
Declinazione:+40° 57′
Distanza di Cygnus X-324.000 anni luce
Distanza del piccolo amico:20.000 anni luce

mercoledì 9 maggio 2018

ammassi stellari stelle via lattea

L'ammasso aperto Westerlund 1 ospita molte delle stelle più grandi e massicce conosciute! E' l'ammasso aperto più massiccio della Via Lattea. La stella più grande, Westerlund 1-26, è una supergigante rossa con un diametro 1.500 volte più ampio del Sole. Questa stella è talmente grande che se fosse al centro del Sistema Solare, arriverebbe quasi a lambire Saturno. E non è tutto, ci sono anche supergiganti rosse, ipergiganti gialle. Stelle enormi, più grandi si Aldebaran e di Betelgeuse. E assieme a questi giganti è stata trovata una Magnetar!

Questo splendido ammasso aperto si trova a circa 15.000 anni luce dal Sistema Solare, nella costellazione dell'Altare.
Le stelle super giganti che popolano questo angolo di Via Lattea hanno un'età di circa 3 milioni di anni: sono quindi tutte molto giovani rispetto al Sole che di anni ne ha 4,6 miliardi. E anche se è così giovane, i cosmologi prevedono che potrebbe presto diventare un cimitero di stelle morenti: un ammasso globulare.
Ma andiamo con ordine, perché le stranezze di questo ammasso sono davvero tante!

Grazie alla straordinaria popolazione di stelle supermassicce che ospita, Westerlund 1 offre un'opportunità unica per esplorare l'evoluzione di questi rari esemplari stellari:dalla nascita alla morte e oltre.
E rappresenta anche un caso unico di studio sulla formazione e l'evoluzione di un ammasso aperto che sembra destinato a evolversi velocemente in un ammasso globulare.
E questo è un fenomeno molto atipico se pensiamo all'evoluzione degli ammassi aperti e alle origini degli ammassi globulari.
Per capire meglio le stranezze di Westerlund 1, scopri qui le caratteristiche e le differenze degli ammassi aperti e degli ammassi globulari
All'interno di Wd1, ormai lo avete capito, troviamo un alto numero di stelle ipergiganti gialle. Queste stelle sono poco calde, ma molto massicce, con una massa che va dalle 20 alle 50 masse solari. Sono rarissime nella Via Lattea, perché a causa della loro massa elevata bruciano molto in fretta e hanno una vita estremamente breve.

Ma all'interno di Westerlund 1 sono state scoperte anche un alto numero di stelle supergiganti e ipergiganti blu.
Queste stelle, al contrario delle supergiganti gialle, sono stelle caldissime, la loro temperatura va dai 20.000 gradi centigradi ai 50.000 gradi centigradi. Per fare un paragone, il sole arriva a 6.000 gradi centigradi.
In generale, Il diametro di tutte queste stelle supergiganti e ipergiganti può raggiungere le centinaia di volte quelle del Sole. Alcune di esse superano il migliaio di diametri solari! Riuscite ad immaginarvi la differenza tra queste stelle e la nostra?
E sono tutte all'interno dello stesso ammasso aperto!

E non è tutto, all'interno di Westerlund 1 sono state anche identificate diverse stelle di Wolf-Rayet, particolari stelle supergiganti giunte ormai al termine della propria vita e che si stanno letteralmente dissolvendo proiettando nello spazio interstellare la propria massa ad una velocità che arriva fino ai 2.000 km/sec. La loro temperatura è inimmaginabile: arriva fino a 150/200 mila gradi centigradi!

Tutto questo fa di Wd1 un ammasso veramente mostruoso. Ma la ciliegina sulla torta la fa una Magnetar che si trova nelle periferia dell'ammasso.
Le Magnetar sono stelle ancora più massicce delle super e iper giganti. Esse sono allo stadio finale della propria esistenza e sono ancora più compresse e pesanti delle stelle di neutroni (pulsar). Sono dei veri e propri buchi neri mancati.

E qui nasce il primo mistero di Westerlund 1.
La presenza simultanea sia di stelle di Wolf-Rayet che di supergiganti rosse e azzurre è stata molto inaspettata per i cosmologi, e la Magnetar proprio non ha spiegazione di esistere.
La cosa che lascia veramente senza parole i cosmologi è che gli ammassi aperti, per definizione sono agglomerati di stelle molto giovani, appena formate dalla stessa nebulosa molecolare. Come è possibile quindi che all'interno di Wd1 stelle molto vecchie come le Wolf-Rayet e addirittura una Magnetar, si trovino a braccetto con stelle giovanissime come le compagne supergiganti azzurre?

L'unica spiegazione che i cosmologi riescono a darsi è che all'interno di Wd1 stiamo assistendo alla presenza di generazioni stellari differenti.
E questo rappresenta un secondo rompicapo. Infatti stelle di seconda o terza generazione sono stelle molto massicce generate dai resti di morti stellari precedenti, cioè gas espulsi da vecchie stelle morenti che si sono ricombinati a formare nuove stelle più pesanti.

Ma noi stiamo osservano un ammasso aperto, e in un ammasso aperto le stelle dovrebbero essere tutte di prima generazione. Infatti, il tempo necessario ad una stella per estinguersi, rilasciare il proprio materiale in maniera più o meno violenta, e dare luce a nuove stelle, sarebbe troppo lungo affinché l'ammasso aperto non si sia nel frattempo disperso.

Quindi, come far fronte a questi due misteri?
Forse, Wd1 potrebbe essere una rara regione di "starburst" intra-galattica. Cioè una zona all'interno della quale sta avendo luogo una formazione stellare a ritmi molto più intensi della norma.
Ma anche questa ipotesi perde acqua. Le osservazioni infatti sia nel visibile che ad altre lunghezze d'onda non rivelano né rimasugli nebulari e né fenomeni di formazione stellare, sia all'interno dell'ammasso che nei dintorni. Lo "starburst" è stato forse così rapido da essere già terminato?

Ma allora come si è formato Westerlund 1?
Le osservazioni di altre grandi regioni di formazione stellare sia all'interno della via lattea che in altre galassie, mostrano che gli ammassi stellari si formano in complessi più grandi, con chiare evidenze di rimasugli delle giganti nubi molecolari da cui hanno origine.
Un esempio chiaro di questo fenomeno lo troviamo nella nebulosa Tarantola, la più grande zona di formazione stellare conosciuta nel nostro gruppo locale di galassie, che con i suoi 500 anni luce di estensione ospita un numero elevato di ammassi aperti.

Partendo da questi presupposti sono state fatte osservazioni per cercare stelle o piccoli aggregati nei dintorni di Wd1. Il risultato? Nessuna stella, nessun rimasuglio nebulare: Inaspettatamente, Wd1 sembra essersi formato in uno isolamento totale, dal nulla!
Ma questa, tuttavia, non è stata l'unica sorpresa.
I cosmologi hanno anche analizzato le velocità radiali con la quale le stelle dei Westerlund 1 si muovo le une rispetto alle altre, ovvero la velocità di radiale nell'ammasso. E hanno scoperto che questa velocità è molto più alta di quanto ci si aspetterebbe in base alla sua dimensione!

Insomma, le osservazioni sembrano sollevare più domande che risposte attorno a questo angolo di Via Lattea che mette in imbarazzo i cosmologi.
Perché la velocità radiale di Wd1 attualmente è ancora così elevata? Forse Wd1 si è formato, o si sta ancora formando, attraverso la fusione di un certo numero di sotto-gruppi di stelle? Nonostante le sue stelle siano così giovani, Westerlund 1 sta già diventando rapidamente un ammasso globulare?
Come è stata accumulata così tanta massa in un così piccolo volume di spazio? Qual era la natura dell'agente fisico che ha portato alla sua apparentemente istantanea formazione, in una regione altrimenti spoglia della Galassia? Come mai al suo interno ci sono stelle giovanissime assieme a stelle molto più vecchie o addirittura di seconda e terza generazione?

Cosa ne sarà di Westerlund 1?
I cosmologi pensano che probabilmente, come accennato sopra, questo ammasso rimarrà sempre molto compatto e che potrebbe diventare un atipico ammasso globulare, formato dalle stesse stelle molto giovani e massicce a cui ha dato la luce.
Tuttavia il futuro di Westerlund 1 sarà sicuramente molto movimentato e "scoppiettante" grazie all'alto numero di Stelle doppie che sono state osservate al suo interno. Oggi abbiamo la certezza della presenza di oltre 70 esemplari di stelle binarie confermate.

Il ruolo che hanno le stelle binarie nell'evoluzione stellare è legata al fenomeno di "zombizzazione". Infatti come sappiamo l'interazione che avviene nei sistemi binari ha l'effetto di rimuovere prematuramente il mantello esterno ricco di idrogeno della stella principale; impedendo così una successiva transizione attraverso una fredda fase di ipergigante e impedendo la perdita di massa che caratterizza le stelle di wolf rayet di cui abbiamo parlato prima.
Quindi le stelle giganti binarie presenti all'interno di Westerlund 1 rappresentano, al contrario delle coinquiline singole di wolf rayet, la miccia che porterà presto alla formazione di luminosissime supernove di tipo 1A.

scopri qui il processo di formazione delle supernovae di tipo 1A
Questo significa che, considerate le mostruose masse di queste stelle, dopo le esplosioni all'interno di Wd1 avremo con buona probabilità anche un alta popolazione di stelle di neutroni e buchi neri!
Come conferma di questo scenario futuro, troviamo la potentissima Magnetar di cui abbiamo parlato prima.

Insomma, pare che Westerlund 1 oltre a stupirci adesso darà anche un grande spettacolo nel futuro!




sabato 31 marzo 2018

Pianeti extrasolari via lattea
Un pianeta extra-solare ricoperto di ghiaccio ardente! Gliese 436b, o il pianeta "dal ghiaccio ardente", è una delle contraddizioni più esotiche della conoscenza umana. Tuttavia, questa apparente contraddizione non è del tutto infondata. Ecco svelati i segreti di questo eso-pianeta così fuori dal comune.

Ma iniziamo dall'inizio. Gliese 436b è un pianeta extra-solare (o eso-pianeta) che ruota attorno alla stella nana rossa Gliese 436, una stella del tutto simile al Sole a 30 anni luce dalla Terra, nella costellazione del Leone.

Gliese 436b ha una massa e un raggio molto vicini a quelli di Urano. La differenza tra questo pianeta e Urano è a la distanza sorprendentemente vicina alla stella attorno alla quale ruota Gliese 436b: circa 3 milioni di chilometri.
Abbiamo parlato molto di urano in questo articolo: i misteri di Urano. Qui puoi scoprire la sua atmosfera e il mistero della sua posizione.
Anche se questa può sembrare una grande distanza, se la immergiamo nel Sistema Solare scopriamo che Mercurio, il pianeta più vicino al Sole e che subisce temperature talmente roventi da fondere il piombo, è a quasi 58 milioni di chilometri dal Sole.
Riuscite a comprendere quanti pochi siano 4 milioni di chilometri?
Glise 436b è praticamente attaccato alla sua stella!
E le stranezze non sono finite qui: Glise 436b sembrerebbe possedere anche una immensa coda simile a quella delle comete, ma ampia circa 50 volte le dimensioni della stella madre!


Ma torniamo alla cosa veramente strana di questo pianeta: la sua superficie ghiacciata nonostante la sua strettissima vicinanza alla propria stella.
Siamo abbastanza sicuri che il pianeta "dal ghiaccio ardente" si trovi così vicino alla sua stella perché le osservazioni attraverso il metodo del transito hanno stimato un periodo di rivoluzione intorno alla sua stella di solamente 2,5 giorni terrestri.
E per avere questa altissima velocità la sua vicinanza deve quasi sicuramente essere quella.
Quindi, la temperatura superficiale di Glise 436b è di circa 450 gradi Centigradi.
Ma il punto di ebollizione dell'acqua è 100 gradi C, dunque come è possibile che attraverso le osservazioni spettroscopiche sia stata rilevata la presenza di ghiaccio?

Prima di tutto bisogna tener presente la posizione, le dimensioni e la massa del pianeta.
Per esempio, se Glise 436b fosse principalmente composto da gas come l'idrogeno e l'elio, il suo raggio sarebbe stato simile a quello di Giove, se non più grande.
D'altra parte, se i suoi principali costituenti fossero forme solide di roccia e metallo, le sue dimensioni sarebbero paragonabili a quelle della Terra, di Venere e di Marte.
Appena scoperto, l'ipotesi più accreditata era che il pianeta fosse un grande gigante gassoso, come Giove appunto, o forse anche più grande.
Si pensava anche che il pianeta si fosse formato molto più lontano dalla sua posizione attuale e che sia poi migrato verso la stella fino a raggiungere la sua elevata vicinanza. Questo avvicinamento e la conseguente influenza gravitazionale avrebbe provocato l'espulsione degli strati esterni di idrogeno verso la stella madre, riducendo così il diametro del pianeta alle sue dimensioni attuali.
Ma questa teoria fu accantonata una volta calcolato il raggio di Gliese 436b. Si comprese così che la presenza di strati di idrogeno ed elio erano necessari per spiegare un raggio planetario simile a quello di Urano.

Adesso gli gli astronomi e i planetologi hanno concluso che il ghiaccio presente su Gliese 436b è mantenuto solido a causa dell'enorme forza gravitazionale proveniente dal nucleo del pianeta.
Questa forza gravitazionale e la pressione, come avviene per i giganti gassosi del Sistema Solare, si intensificano sempre più a mano a mano che si scende in profondità, impedendo così all'acqua di evaporare come fa sulla Terra.

Oggi sappiamo che l'acqua può avere altri stati oltre alle tre forme più comunemente note sulla Terra. E l'acqua sul "pianeta dal ghiaccio ardente" è soggetta a condizioni che la rendono molto più densa del ghiaccio familiare che troviamo sul nostro pianeta.
Secondo le ipotesi dei planetologi lo stato dell'acqua su questo pianeta sarebbe quello di "Ice VII", cioè una forma di ghiaccio prodotta non dal freddo ma dalla forte compressione dell'acqua. Così, proprio come il carbonio si trasforma in diamante quando esposto a grandi quantità di temperatura e pressione, l'acqua di Gliese 436 b si trasformerebbe in ghiaccio, che però a causa della vicinanza alla stella madre, sarebbe estremamente caldo, rendendo il pianeta Glise 436b uno dei più affascinanti corpi celesti di cui siamo a conoscenza.

Gliese 436b, il pianeta che arde il ghiaccio, sarebbe quindi composto da un nucleo solido roccioso circondato da un altissimo strato di ghiaccio VII, ovvero acqua allo stato solido causato dalla forte compressione gravitazionale. Questo strato solido sarebbe grande quasi come il pianeta Urano e costituirebbe la maggior parte del diametro planetario.
L'altissima temperatura che subisce la faccia esposta alla luce della vicinissima stella madre, renderebbe bollente questa superficie ghiacciata. Sopra a alla superficie ghiacciata di Glise 436b c'è poi una vasta atmosfera di idrogeno, Elio e idrocarburi vari. E questa atmosfera non farebbe altro che aumentare il calore presente sulla superficie ghiacciata durante le ore diurne!

L'universo pullula di oggetti e spettacolari, che siamo fortunati a conoscere, grazie ai miglioramenti nella tecnologia spaziale. In effetti, Gliese 436b è stato classificato come uno dei pochi pianeti che batte la fantascienza.
Distanza dalla terra:30 anni luce
Costellazione:Leone
Stella madreGlise 436, nana rossa
Distanza dalla propria stella3 milioni di km
Dimensione:Urano/Nettuno
Tempo di percorrenza orbitale2,5 giorni terrestri

martedì 13 marzo 2018

nebulose stelle via lattea

Cosa sono i globuli di bok?

I globuli di bok sono delle zone estremamente buie. Sono sempre stati, fin dal giorno della loro scoperta, tra gli oggetti più misteriosi e meno conosciuti dell'universo. Il loro mistero e il loro fascino sono dovuti al fatto che è difficile capire cosa si celi al loro interno. Le nuove tecnologie però hanno permesso di dare uno sguardo un po più chiaro all'interno dei loro misteri.

Ma iniziamo dal principio, I globuli di Bok sono nuvole molecolari molto compatte e isolate, che appaiono come piccoli globuli scuri all'interno di nebulose diffuse molto estese, come pad esempio i pilastri della creazione nella nebulosa Aquila o nella estesissima zona nebulare nella costellazione di Orione di cui m42 è solo una piccola parte.
Abbiamo parlato delle nebulose diffuse in questo nostro approfondimento: Nebulose diffuse, ricordi dell'universo primordiale

La dimensione dei globuli di bok va di solito da 1 a 3 anni luce, risulta quindi evidente che solo i più vicini sono ben osservabili.
La massa de globuli di bok invece è molto varia. Secondo i cosmologi dalle 15 alle 60 masse solari. Quando superano questa massa si parla nel senso più classico di nebulose oscure, che sono molto più estese.
Questi oggetti sono luoghi davvero estremi, con temperature che vanno oltre il glaciale: infatti la temperatura dei globuli di bok tocca i -260° C.In poche parole i globuli di bok sono tra gli oggetti celesti più freddi conosciuti.
Loading...

A volte capita che i margini di questi meandri nebulari bui e freddi vengano ionizzati dalle stelle vicine. Spesso queste stelle sono appena nate dalla nebulosa madre in cui si trova l'ovulo di bok, e sono quindi stelle molto giovani e cariche di energia.
Il risultato è uno spettacolare anello luminescente che circonda l'ovulo di bok rendendolo unico.
Nella foto qui sotto vedete uno esempio di questo fenomeno: si tratta di un ovulo che si trova all'interno della nebulosa Carena, soprannominato "bruco" per il suo aspetto.
Appare evidente che lungo il perimetro, l'ovulo scuro sia delimitato da una zona molto luminosa che risplende addirittura rispetto alla nebulosa sullo sfondo.


Ma perché i globuli di bok sono così scuri e gelidi?
La risposta a questa domanda è nella composizione dei globuli. All'interno dei globuli di bok non è presente solamente del gas, ma troviamo anche una importante presenza di polvere.
La densità interna di queste zone è piuttosto elevata rispetto ai valori tipici dello spazio interstellare e della nebulosa ad emissione circostante.
Per questo motivo i globuli di bok assorbono e disperdono la luce della nebulosa o delle stelle che hanno attorno, e questa non riesce a penetrarli. Di conseguenza appaiono scuri e freddi.
Com l'avvento delle nuove tecnologie osservative che ci permettono di esplorare questi oggetti anche a lunghezze d'onda differenti, le cose sono un po' cambiate e i cosmologi oggi sono in grado di penetrare leggermente questi meandri usando le osservazioni nell'infrarosso.
Queste osservazioni hanno lasciato la comunità scientifica sorpresa, e hanno confermato la teoria che già Bart Bok, scopritore di questi oggetti, aveva approcciato nel 1940: All'interno dei globuli di bok stanno nascendo delle proto-stelle.

Ma come facciamo ad esserne certi della formazione stellare?
Il processo di formazione stellare oggi è ormai abbastanza noto ai cosmologi. Noi oggi non ne entreremo nel merito perché ne parleremo più a fondo in un approfondimento che è già in fase di scrittura, ma il collasso gravitazionale che avviene all'interno dei globuli di bok lascia due firme indelebili: Forti emissioni di carbonio, e flussi energetici bipolari.

I cosmologi sono stati in grado di osservare queste due caratteristiche nella maggior parte dei globuli di bok che conosciamo.
In questo approfondimento: La nascita di una stella in diretta potete scoprire, ma soprattutto veder evolversi, una delle più grosse manifestazioni di flusso energetico bipolare generato da una proto-stella

Ma le cosa più sorprendente è che in alcun casi le osservazioni all'infrarosso, quindi capaci di percepire oggetti a bassissime temperature, hanno messo in luce flebili corpi ancora molto deboli sia in termini di luminosità che di calore, all'interno della quale non si è ancora accesa la miccia della combustione nucleare: delle vere e proprie proto-stelle in uno stadio precedente a quello di stelle.

I globuli di bok sono oggetti straordinari: zone riservate, angoli privati all'interno di nebulose luminose dove piccole stelle come il sole stanno per venire alla luce. Sono come dei bozzoli dove una bellissima farfalla termina la propria metamorfosi prima di mostrarsi al mondo in tutti i suoi colori e la sua bellezza.
Le loro dimensioni, inferiori ai 3 anni luce, si allineano benissimo con quelle che potrebbero poi essere le dimensioni di un sistema stellare. Basti pensare che le dimensioni del nostro Sistema Solare arrivano a raggiungere i due anni luce.
Questo ci fa sognare, perché quando ne guardiamo uno su una lastra fotografica è come se stessimo guardando il Sole ed il Sistema Solare nei primissimi attimi della loro formazione.



mercoledì 24 gennaio 2018

nebulose via lattea
Le nebulose diffuse oltre ad essere indubbiamente tra gli oggetti più scenici ed eleganti del cielo, molto spesso rappresentano anche le ultime tracce dell'universo primordiale all'interno delle galassie.

Le nebulose diffuse sono nuvole di materia interstellare. sottili ma diffuse agglomerazioni di gas e polvere. Rimasugli di antico gas primordiale che ancora non ha generato stelle. Tracce primordiali del gas sopravvissuto dai tempi in cui l'universo dopo il big bang non aveva ancora visto accendersi stelle nelle galassie. Quando guardiamo queste nebulose è come se guardassimo ciò che esisteva al tempo delle prime proto-galassie.
Sono escluse da queste considerazioni le nebulose diffuse generate dalla morte di una stella, come spiegato in questo articolo: nebulose planetarie.
Oppure quelle generate dall'esplosione di supernovae, in questo approfondimento scoprite come: Cosa sono le supernovae?.

In questo approfondimento ci concentreremo su quelle nebulose diffuse non generate da morti stellari, ma costituite da gas primordiale e che esistono da quando esistono le galassie.
Queste sono le nebulose ad emissione e le nebulose a riflessione.
Stiamo parlando di nebulose come M42 (Nebulosa di Orione), o come la nebulosa rosetta, oppure ancora la nebulosa aquila, o la nebulosa tarantola.
Questi oggetti sono estremamente antichi, e prima che le galassie si addensassero di stelle erano tutto ciò che esisteva nelle proto-galassie e nell'universo.
Si, perché questo tipo di nebulose sono i luoghi in cui nascono le stelle. Quello che vediamo oggi nella nostra galassia e nelle galassie vicine sono zone dove i venti stellari e le perturbazioni gravitazionali non hanno ancora innescato il meccanismo che porta alla formazione stellare. E quando queste nebulose sono davvero grandi non generano singole stelle ma addirittura ammassi stellari: gli ammassi aperti.
Abbiamo parlato in maniera approfondita di questi ammassi qui: gli ammassi aperti.

Ma perché le vediamo così belle e brillanti?
La risposta ci porta a classificare le nebulose diffuse in due sotto tipi: Le nebulose ad emissione e le nebulose a riflessione. 


venerdì 5 gennaio 2018

ammassi stellari materia oscura via lattea

Quanto pesa la via lattea?


Miliardi di stelle, migliaia di pianeti e decine di anni luce cubici di polveri stellari e nebulose di gas. Tutta questa materia ha sicuramente un peso, quanto? Ecco i risultati delle nuove valutazioni fatte dai cosmologi che non rispondono solo a quello che potrebbe sembrare un banale quesito nato dalla semplice curiosità, ma svela nuovi segreti sulla nostra galassia.

Abbiamo parlato qui della sua struttura: Morfologia della via lattea.
Poi vi abbiamo parlato delle sue dimensioni: La via lattea in numeri.
E qui vi abbiamo dato una visione di ciò che vediamo della nostra galassia dalla terra: Cosa vediamo della via lattea.

Oggi invece vi parliamo del sui peso!
Prima di tutto è doveroso precisare che più che di peso, si parla di massa. La risposta a questa domanda non mette a tacere solo i più curiosi, ma aiuta i cosmologi a posizionare la nostra galassia in un contesto cosmico molto complesso.
L'attività di una galassia, cioè il tasso di formazione stellare: la velocità con cui le stelle si formano, esistono e muoiono, sembra essere strettamente legata alla massa complessiva della galassia.
I fisici che studiano l'evoluzione delle galassie, osservano come la massa si rapporta alla loro evoluzione. Se i fisici riescono ad individuare con precisione la massa della Via Lattea, possono capire come si formano e si evolvono anche le altre galassie dell'universo.
Fino ad oggi le stime sulla massa della Via Lattea variavano selvaggiamente. Alcuni studi stimano questa massa pari ad un trilione di soli, altri dichiarano che sia pari a 100 miliardi. Chi si avvicina di più alla verità?

Queste misure includono tutti i tipi di materia che possiamo osservare o rilevare direttamente: polvere, pianeti, lune, stelle e alcune delle galassie nane che orbitano attorno alla Via Lattea.
Ma sicuramente il fattore predominante per poter stimare in maniera ragionevole la massa della Via Lattea è capire l'entità della materia oscura che avvolge la Via Lattea come una nuvola invisibile.

Invisibile tranne che per i suoi effetti gravitazionali su altri oggetti.
Come sappiamo infatti la materia oscura è eccezionalmente difficile da misurare. Oggi però i cosmologi dell'università McMaster in Canada, hanno messo a punto un modello che punta a misurare la materia oscura osservando gli effetti gravitazionali sugli ammassi globulari presenti nell'alone della Via Lattea.
Per un approfondimento sugli gli ammassi globulari e sulla loro localizzazione all'interno della via lattea vi invitiamo a leggere questo approfondimento:

Dicevamo quindi che questo nuovo modello ha studiato i movimenti e le velocità di ben 89 ammassi globulari presenti nell'alone della Via Lattea per stimare la massa della materia oscura che ci circonda.
Sono stati usati gli ammassi globulari perché sono dispersi a diverse distanze in tutta la galassia, e perché sono relativamente grandi, ben definiti e più facili da tracciare nel tempo rispetto alle singole stelle.
Mentre questi ammassi stellari orbitano attorno al centro galattico, la materia oscura influenza le loro orbite in modi prevedibili.

Benissimo, unendo le stime sulla materia oscura alle stime basate su oggetti cosmici visibili come stelle e nebulose, il modello ha creato un "profilo di massa" della Via Lattea che stima la massa contenuta fino ad una certa distanza dal centro galattico.
Capire quanto velocemente e in quale direzione si muovono gli ammassi globulari è piuttosto difficile. Combinare tutti questi dati insieme in un modello coerente per la Via Lattea è stata una vera sfida.

700 miliardi di soli, questa è la massa della Via Lattea fornita da questo nuovo modello.
La massa strettamente stellare della Via Lattea è stimata in circa 60 miliardi di soli, la polvere e il gas delle nebulose costituiscono circa il 3% della massa restante, mentre l'88% della massa della Via Lattea è costituita da materia oscura.

A volte le persone rimangono sorprese dal fatto che i cosmologi non abbiamo un'idea precisa di quanto sia pesante la Via Lattea, dato che è la galassia in cui viviamo, ma questo modello è un grande passo avanti per poter affermare con sicurezza che sappiamo quanto sia massiccia la nostra casa.

Le prossime volte che guarderete la Via Lattea, quella bellissima striscia chiara nel cielo notturno rendetevi conto che quel flusso di stelle e polvere che attraversa il cielo scuro è solo circa un quinto di ciò che c'è là fuori. Questa è la grande spinta che ispira cosmologi ed astrofisici a studiare la materia oscura.


Massa totale700 miliardi di masse solari
Massa stellare60 miliardi di masse solari
Nebulose, polvere e gas19 miliardi di masse solari
Materia Oscura:621 miliardi di masse solari

mercoledì 29 novembre 2017

cielo profondo galassie nebulose stelle via lattea

Nebulose planetarie

Le nebulose planetarie sono importanti fonti di gas nel mezzo interstellare, rilasciando il loro materiale nello spazio a velocità che vanno dai 25 ai 50 km/h. Gli astronomi calcolano che ci siano circa 20.000 nebulose planetarie nella Via Lattea, ciascuno dei quali rappresenta gas espulso abbastanza recentemente da una stella centrale giunta al termine della sua evoluzione. <
Di fatto però sono state catalogate solo circa 1.800 nebulose planetarie, a causa dell'oscuramento provocato dalle sacche di polvere oscura nella galassia.

Le nebulose planetarie sono un tipo di nebulose luminose che si sta espandendo lentamente sotto forma di gusci di gas, espulsi da stelle che stanno morendo.
Osservate al telescopio hanno un aspetto relativamente rotondo e da questo loro aspetto deriva il loro nome perché i primi osservatori trovavano una forte assomiglianza con i dischi dei pianeti.


Rispetto a nebulose diffuse come M42, le nebulose planetarie sono piccoli oggetti con un raggio tipicamente di qualche anno luce e contenenti una massa di gas pari a circa 0,3 masse solari. per fare un esempio, la Nebulosa Elica (NGC 7293) nella costellazione dell'Acquario, ha una dimensione apparente di circa 20 minuti d'arco: due terzi delle dimensioni angolari della Luna.
Le nebulose planetarie sono molto più dense rispetto alla maggior parte delle nebulose di gas diffuso.
Tipicamente contengono dai 1.000 ai 10.000 atomi per cm cubico. Hanno generalmente confini esterni regolari e netti, e spesso hanno anche un confine interno relativamente nitido che da loro l'aspetto di un anello.
Le immagini ad alta risoluzione di una nebulosa planetaria di solito mettono in mostra una interessantissima particolarità di questi oggetti: piccoli nodi e filamenti, i così detti nodi cometari.
Abbiamo realizzato un interessante approfondimento su queste favolose formazioni a questo link: Cosa sono i nodi cometari.

Tutte queste nebulose hanno una stella centrale più o meno visibile, ed è proprio questa stella morente che fornisce la radiazione ultravioletta necessaria per ionizzare il gas circostante rendendolo luminoso e colorato.
Queste stelle sono tra le più numerose e la loro evoluzione è relativamente rapida.
Esse hanno una temperature molto più alta di quelle neonate presenti nelle normali nebulose diffuse.

Ma come nascono questi oggetti che sfruttano la morte della loro stella per diventare così belle e colorate?

Tutto inizia dalla morte della stella centrale, una stella gigante rossa giunta al termine di suoi processi nucleari. In questa fase la forza di gravità inizia a perdere piede e si verifica una rapida perdita di massa sotto forma di vento stellare. Gli astrofisici stimano che queste stelle perdano giornalmente una massa pari a circa lo 0.01% della massa terrestre e che questa si allontani dalla stella ad una velocità di circa 30 km/secondo. 


All'inizio di questa fase la gigante rossa potrebbe anche rimanere oscurata dalla polvere di elementi pesanti che si forma durante il rilascio e la perdita di massa. 


Al termine di questa fase, chiamata appunto "di perdita di massa", la stella è rimasta senza i suoi elementi superficiali, ed inizia sorprendentemente a diventare sempre più calda. Questa inversione di rotta avviene perché il suo nucleo caldo rimane esposto avendo perso gli strati superficiali. 


A questo punto il gas espulso inizia ad essere ionizzato (wikipedia: ionizzazione dei gas) dalla radiazione proveniente dalla stella calda.

La zona di ionizzazione si muove costantemente verso l'esterno lambendo il materiale rilasciato dall'espulsione di massa iniziale.
Naturalmente all'inizio le aree ionizzate sono quelle più prossime alla stella. Ma con il passare del tempo la ionizzazione si espande raggiungendo le zone più esterne.
Tutto ciò visto dalla terra appare ancora come una stella, perché il disco nebulare venutosi a formare è ancora troppo piccolo per essere osservato dalle distanze cosmiche.
Il gas della nube infatti ha una densità ancora relativamente alta: circa un milione di atomi per centimetro cubo e diventerà più diluita a mano a mano che il gas si espande.

Dunque l'espansione inesorabile continua, e la diminuzione della intensità del gas porta la nebulosa alla fase intermedia, cioè la fase in cui la densità scende al punto in cui viene ionizzata l'intera massa del gas stesso.
E' proprio in questo momento che nasce la magia di luce e colore delle nebulose planetarie.
La maggior parte delle nebulose planetarie che osserviamo si trova in questa fase intermedia.

Ma cosa ha in serbo il futuro per questi splendidi oggetti?
Beh... come tutte le cose belle, anche lo splendore di queste magnifiche nebulose avrà una fine.
Con il passare del tempo la stella centrale diventerà sempre meno luminosa, fino a non poter più fornire una quantità sufficiente di radiazioni ultraviolette per mantenere ionizzata la nebulosa.
Ancora una volta le regioni esterne della nebulosa diventeranno neutre e quindi invisibili.
Alla fine il gas che via via è diventato sempre più buio, si mescolerà al gas interstellare e la nebulosa si sfalderà scomparendo.


La stella centrale
Le stelle nel cuore delle nebulose planetarie meritano un po di attenzione.
Gli astronomi osservando i loro spettri si sono resi conto che la maggior parte di esse è molto calda e che hanno spettri molto simili alle stelle di Wolf-Rayet
Le stelle centrali nelle giovani nebulose planetarie (cioè nella fase successiva a gigante rossa) sono calde quanto le stelle massicce di classe O e B, che vanno dai 35.000 ai 40.000 gradi centigradi. La loro luminosità però è circa 10 volte più debole.
Paragonate al sole queste stelle hanno circa la metà del suo diametro ma sono 1.000 volte più luminose.
A mano a mano che la nebulosa si espande invecchiando, la stella aumenta la sua luminosità e la sua temperatura, ma il suo raggio diminuisce costantemente.
Dopo soli 5.000 anni circa dall'inizio della loro espansione iniziale, la luminosità di queste stelle raggiunge un valore che è circa 10.000 volte la luminosa del Sole!

Da questo punto in poi la stella diventa più debole, ma mentre il restringimento della stella continua per qualche tempo, la temperatura continua ad aumentare fino a raggiungere i 200.000 gradi centigradi: quasi cinque volte più calda della maggior parte delle altre stelle della galassia.
Una volta raggiunti questi livelli vertiginosi, anche la sua temperatura inizia a scendere e nel giro di circa 10.000 anni queste stelle diventano delle nane bianche. Stelle molto dense, dalle dimensioni simili alla terra ma con una densità di migliaia di chilogrammi per centimetro cubo.
Gli astrofisici concordano sul fatto che queste nane bianche debbano ottenere quasi tutta la loro energia dalla contrazione che subiscono durante la fase finale del processo, e non da combustione nucleare. Questo come conseguenza del fatto che non dovrebbero più contenere idrogeno o elio, tranne forse in un guscio molto sottile sulla loro superficie.


Composizione chimica
Ma torniamo alle nebulose planetarie e alla loro composizione chimica.
Queste nebulose, essendosi formate con i resti di una stella morente, sono chimicamente ricche di elementi prodotti dalle reazioni nucleari all'interno della stella centrale.
Quindi la loro composizione chimica dipende molto dal tipo di stella madre e dalla sua generazione stellare.
Alcune sono molto ricche di carbonio e possono raggiungere livelli di questo elemento doppi rispetto all'ossigeno, altre invece sono ricchissime di azoto. Le più luminose che conosciamo, osservate nelle galassie esterne, ne sono esempi evidenti.

La maggior parte delle nebulose planetarie contengono pochissimo idrogeno, ormai esaurito dalle reazioni nucleari della stella centrale quando era nel pieno della sua attività.

Grazie al fatto che questi oggetti riflettono la composizione iniziale delle stelle che li hanno generati, gli astronomi usano le nebulose planetarie anche per studiare il tasso di presenza degli elementi iniziali presenti nella galassia madre.

Ma nelle nebulose planetarie, oltre a gas sono presenti anche piccole quantità di polvere, che ci appaiono sotto forma di nodi: i nodi cometari. Sono formazioni straordinarie, composte da microgranuli di materiale più "polveroso" rispetto al gas circostante.
In generale questa polvere non può essere vista direttamente finchè l'onda di ionizzazione proveniente dalla stella centrale non la colpisce.
Potete trovare un interessante approfondimento sui nodi cometari a questo link: I nodi cometari.

La presenza di polvere indica chiaramente che le nebulose planetarie sono ricche di elementi pesanti.

Esistono tuttavia due eccezioni a quanto abbiamo detto: una si trova nell'ammasso globulare M15 (cosa sono gli ammassi globulari?) e l'altra nell'alone esterno della via lattea.
Gli astronomi si sono accorti che queste due nebulose planetarie hanno un contenuto molto basso di elementi pesanti, circa la metà della media osservata nella maggior parte delle altre nebulose planetarie. Entrambe le due nebulose in questione sono molto antiche, e questo suggerisce che il gas primordiale nella via lattea aveva un contenuto di elementi pesanti basso, e che quindi sia nata molto presto nel ciclo di vita dell'universo.


Posizione nella galassia
A proposito di età, uno dei migliori indicatori dell'età media degli oggetti galattici è la loro posizione nella galassia ed il loro movimento.
Gli oggetti più giovani sono nelle braccia a spirale, vicino al gas da cui sono stati formati. Di conseguenza gli oggetti sono distanti dal piano galattico e dalle braccia a spirale.
Usando questi criteri valutativi scopriamo che le nebulose planetarie sono oggetti di mezza età; Le osservazioni infatti le collocano tra le braccia e il nucleo, con concentrazione in aumento verso il nucleo. I loro percorsi nella via lattea seguono traiettorie ellittiche, mentre solitamente le orbite delle stelle più giovani tendono ad essere più circolari.
Quindi gli astrofisici hanno classificato la maggior parte delle nebulose planetarie come appartenenti alla "Popolazione disco", una via di mezzo appunto tra quelli di Popolazione II (molto vecchi) e Popolazione I (giovani).


A proposito della stella che fu
Torniamo per un attimo alla stella centrale delle nebulose planetarie, e cerchiamo di capire quale tipo di stelle possano poi trasformarsi in stelle centrali circondate da nebulose planetarie.
Gli astronomi studiando la distribuzione nella galassia delle nebulose planetarie sono giunti alla conclusione che le stelle che danno origine a questo fenomeno abbiamo inizialmente una massa di poco superiore a quella del Sole.

Stelle molto massicce e giovani, come abbiamo detto prima, si trovano per lo più sulle spirali e presso il piano galattico, mentre le nebulose planetarie tendono ad essere più prossime al nucleo.
Inoltre, la massa di queste nebulose è di circa 0,3 masse solari, e la massa di una tipica nana bianca (lo stadio finale della stella centrale) è di circa 0,7 masse solari.
Considerando che la velocità di espansione della nebulosa è probabilmente paragonabile alla velocità di fuga dal suo progenitore, gli astrofisici giungono alla conclusione che la stella originaria era una stella gigante rossa: una stella grande e "fresca", con una massa poco superiore al sole.
Questo aspetto è straordinario se pensiamo che queste giganti rosse, dalla temperatura relativamente bassa, diventeranno al termine del processo delle piccole nane bianche caldissime.

Molto probabilmente le stelle candidate a diventare progenitrici di nebulose planetarie sono stelle variabili di lungo periodo. Queste particolari stelle sono note per essere instabili ed hanno dimensione e massa coerente con la teoria evolutiva che hanno descritto gli astronomi.

Sono invece stelle completamente diverse le Novae: stelle che si illuminano enormemente per un breve periodo e che rilasciano un guscio di materiale in modo esplosivo ad una velocità di centinaia di chilometri al secondo.
Potete trovare un approfondimento su questo tipo di fenomeno a questo link: Cosa sono le supernovae?







lunedì 20 novembre 2017

cielo profondo hubble nebulose via lattea

I Nodi cometari

In tutte le nebulose planetarie troviamo i così detti nodi cometari, affascinanti formazioni ricche di misteri con dimensioni che possono raggiungere e superare quelle del sistema solare. In questo articolo scopriamo cosa sono, come si formano e qual'è il loro destino!

Il telescopio spaziale Hubble ha ripreso e reso possibile lo studio di innumerevoli nebulose planetarie, formatesi dopo una morte lenta e poco spettacolare di una stella di dimensioni medie, più o meno come il Sole.
Puoi trovare un approfondimento sulle Nebulose planetarie a questo link: Cosa sono le nebulose planetarie e che segreti nascondono?

Grazie all'Hubble possiamo dire che in tutte le nebulose planetarie troviamo i nodi cometari.
Portano questo nome solamente per la loro somiglianza alle comete del sistema solare: un bulbo dalla quale parte una lunga coda a ventaglio. Rappresentano una caratteristica comune dell'evoluzione delle nebulose planetarie. Tuttavia, a causa delle loro piccole dimensioni, purtroppo possono essere osservati solo nelle nebulose più vicine.


I nodi cometari sono delle zone della nebulosa più dense e polverose dell'area circostante.
La parte di questa zona rivolta verso la stella centrale viene ionizzata (wikipedia.org/wiki/Ionizzazione) e illuminata da essa. Il nodo stesso funge poi da schermatura per le radiazioni provenienti dalla stella che non riescono ad oltrepassarlo, generando gli effetti "coda" che vediamo dietro (rispetto alla stella centrale) di essi.
La testa di un nodo, Il globulo centrale, è almeno 1.000 volte più denso del materiale circostante.
Per capire meglio le loro dimensioni facciamo qualche paragone: essi generalmente sono più grandi del sistema solare convenzionale, cioè dell'orbita di Plutone ed hanno una massa paragonabile a quella della Terra. Possono avere forme più o meno allungate, ed essere disposti in maniera più o meno concentrica rispetto al centro della nebulosa e alla stella centrale.

I nodi cometari sono particolarmente importanti perché probabilmente contengono una frazione significativa della massa totale di materiale espulso dalla stella centrale.
Ciò significa che circa la metà di tutto il materiale espulso è intrappolato in uno stato molecolare più denso del resto e si isola dalle radiazioni ultraviolette provenienti dalla stella. Questa protezione fa sì che il materiale all'interno del nodo non venga coinvolto dai processi di fotoionizzazione (wikipedia.org/wiki/Fotoionizzazione) che determinano le caratteristiche e il destino del materiale ionizzato.

Sembrano formarsi presto nel ciclo di vita delle nebulose planetarie che li ospitano, anche se la loro formazione per noi osservatori coincide in realtà solo con il "momento" in cui diventano visibili. Lo vedremo più avanti.
Gli astronomi hanno due ipotesi per spiegare la variazione di densità dei nodi cometari rispetto al materiale circostante della nebulosa. La prima è che all'origine ci sia un meccanismo di instabilità operante a fronte della ionizzazione della nebulosa. L'altra è che siano dovuti ad una disomogeneità nel gas/plasma della superficie della stella che si sta dissolvendo ed allontanando dal nucleo.

I Nodi cometari non sono tutti uguali ma ne esistono di diverse tipologie.
Ad esempio quelli all'interno della nebulosa elica (NGC 7293) e della nebulosa della Lira (M57 - NGC 6720) si sviluppano lungo percorsi molto simmetrici che si allontanano dalla stella centrale come i raggi di una ruota. In particolare se osserviamo bene i nodi della nebulosa elica ci accorgiamo che la parte del bulbo rivolta verso la stella centrale e molto più chiara e luminosa: zone frontali in cui la ionizzazione è molto maggiore che nelle zone posteriori.
I Nodi della nebulosa Eschimese (NG C2392) sono anch'essi a raggiera ma le code sono più irregolare e i bulbi presentano una ionizzazione minore.
Nella nebulosa Manubrio (Dumbbell Nebula - NGC 6853) invece, sono presenti sia nodi simmetrici che noti con direzioni casuali, e poi ancora nodi con code più o meno regolari e nodi senza code vistose.
E ora una stranezza fuori dal comune: i nodi della nebulosa retina (IC 4406). Questi nodi non presentano nessuna disposizione a raggiera rispetto alla stella centrale. Sono completamente disordinati ed assomigliano ad un ricamo scuro sopra alla nebulosa. Inoltre nessun lato dei bulbi presenta una luminosità maggiore ad indicare una ionizzazione!!

Le caratteristiche dei nodi ci permettono di capire la loro posizione all'interno della nebulosa planetaria che li ospita.
Come abbiamo detto le nebulose planetarie sono gusci di gas che si espandono lentamente allontanandosi dalla stella morente al centro della nebulosa e che pian piano si surriscalda. durante questo processo le radiazioni ultravioletta ionizzano la nebulosa in quantità differente a seconda della distanza dei gas, dando origine alla varietà di nodi visti sopra.
In poche parole i confini di ionizzazione crescano di dimensioni con il tempo, e i nodi che inizialmente sono nascosti alla reazione ionizzante vengono alla luce quando il fronte ionizzante li raggiunge. Quindi i nodi si formano nei pressi o all'esterno del fronte di ionizzazione principale quando la nebulosa è piuttosto giovane, per essere successivamente superati dal crescente fronte di ionizzazione. I fotoni e la ionizzazione iniziano così a scolpire il materiale dei nodi modificandone l'aspetto e la natura delle code.

Se ad esempio un nodo non presenta un bordo luminoso sul lato opposto alla stella centrale, allora questo si trova completamente fuori dal limite ionizzante.
Nel caso della nebulosa retina non ci sono emissioni intorno ai nodi. Ciò indica che i nodi si trovano ancora nella parte neutrale della nebulosa.
Nel caso invece di M57, ci emissioni sulle punte dei nodi che si affacciano sulla stella centrale, ma la maggior parte dei nodi sono neutri: ciò significa che anche loro si trovano ancora principalmente nella zona neutrale della nebulosa ma che il fronte di ionizzazione sta iniziando a lambirli.

Nella nebulosa Manubrio invece si vedono una varietà di illuminazioni. Alcuni nodi sono solo delle sagome scure, ciò indica che si trovano ancora al di fuori della parte frontale della ionizzazione.
Altri invece hanno il bulbo fotoionizzati sul lato rivolto verso la stella centrale, ad indicare che si trovano nella parte ionizzata della nebulosa.
Nella nebulosa eschimese, i nodi hanno tutto il bulbo brillanti, mentre le code sono più scure, indicando una posizione molto prossima al fronte ionizzato.

Il destino dei nodi cometari è ancora oggetto di molti studi.
E' molto probabile che il loro futuro dipenda dalla loro dimensioni e dalla loro massa.
Una conseguenza della loro ionizzazione è che sono costantemente sottoposti ad una lenta fotoevaporazione (https://it.wikipedia.org/wiki/Fotoevaporazione).
La situazione è molto simile a quella dei dischi proto-planetari (proplyds, o ovuli do bok) presenti nelle nebulose diffuse come la nebulosa di Orione (M42), dove il il nucleo molecolare del globulo viene riscaldato dai fotoni, causando un lento flusso di gas lontano dal nucleo.
Quando questo gas raggiunge il fronte di ionizzazione dei nodi viene fotoionizzato e riscaldato, poi viene rapidamente accelerato ad una velocità di circa 10 km/s.
Quindi nel giro di qualche migliaio di anni i nodi cometari probabilmente si dissolveranno a causa della continua sollecitazione ed "evaporeranno".
Ma i più grandi di essi potrebbero sopravvivere a tutto ciò e potrebbero finire con il vagare per la galassia sottoforma di piccoli asterodi.
Infatti se la forza ionizzante della stella centrale si esaurisce prima dell'evaporazione dei nodi più massivi, la nebulosa planetaria pian piano diventa sempre più buia, e la sollecitazione sempre minore.
Questo potrebbe aiutare l'aggregazione gravitazionale delle polveri presenti all'interno del bulbo del nodo, che finirebbero per compattarsi sotto il loro peso. Come risultato avremmo una nebulosa planetaria che si affievolisce sempre di più abbandonando nello spazio interstellare i nodi cometari più massicci che nel frattempo sono diventati piccoli asteroidi.

Nebulosa Dumbell - NGC 6853 


Nebulosa eschimese - NGC 22392


Nebulosa NGC 7293


Nebulosa della Lyra - M57 



Nebulosa IC 4406